首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the alkyl side chain length of coenzyme Q10 on mitochondrial respiratory chain function has been investigated by the use of synthetic ubiquinone derivatives. Three analogues (3, 4 and 6) were identified that exhibited significantly improved effects on mitochondrial oxygen consumption and mitochondrial membrane potential, and also conferred significant cytoprotection on cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate. The analogues also exhibited lesser inhibition of the electron transport chain than idebenone. The results obtained provide guidance for the design of CoQ10 analogues with improved activity compared to that of idebenone (1), the latter of which is undergoing evaluation in the clinic as a therapeutic agent.  相似文献   

2.
3.
Coenzyme Q (CoQ) deficiency occurs in genetic disorders, during aging and various diseases. Diagnosis requires skin fibroblasts in tissue culture. [3H]Mevalonate incorporation was appropriate to measure the rate of CoQ synthesis in fibroblasts and hepatoblastoma cells. [14C]p-Hydroxybenzoate had limited permeability, but it could be increased with Fugene and cyclodextrin. Inhibition of decaprenyl-4-hydroxybenzoate transferase results in the accumulation of decaprenyl diphosphate, an indicator of enzyme deficiency. Also, analysis of the corresponding mRNAs in this case is useful. In vitro assays to measure trans-prenyltransferase and decaprenyl-4-hydroxybenzoate transferase activities are not available. Neither measurement of methyltransferases is reliable in human cells. In vitro reconstruction of CoQ synthesis, in opposite to cholesterol synthesis, proved to be unsuccessful. Thus, the biochemical characterization of the CoQ biosynthetic system in human cells is restricted to a few reliable analytical procedures.  相似文献   

4.
Details of the discovery of ubiquinone (coenzyme Q) are described in the context of research on mitochondria in the early 1950s. The importance of the research environment created by David E. Green to the recognition of the compound and its role in mitochondria is emphasized as well as the dedicated work of Karl Folkers to find the medical and nutritional significance. The development of diverse functions of the quinone from electron carrier and proton carrier in mitochondria to proton transport in other membranes and uncoupling protein control as well as antioxidant and prooxidant functions is introduced. The successful application in medicine points the way for future development.  相似文献   

5.
Little is known about the regulation of endogenous CoQ(10) levels in response to mitochondrial dysfunction or oxidative stress although exogenous CoQ(10) has been extensively used in humans. In this study, we first demonstrated that acute treatment of antimycin A, an inhibitor of mitochondrial complex III, and the absence of mitochondrial DNA suppressed CoQ(10) levels in human 143B cells. Because these two conditions also enhanced formation of reactive oxygen species (ROS), we further investigated whether oxidative stress or mitochondrial dysfunction primarily contributed to the decrease of CoQ(10) levels. Results showed that H(2)O(2) augmented CoQ(10) levels, but carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a chemical uncoupler, decreased CoQ(10) levels in 143B cells. However, H(2)O(2) and FCCP both increased mRNA levels of multiple COQ genes for biosynthesis of CoQ(10) . Our findings suggest that ROS induced CoQ(10) biosynthesis, whereas mitochondrial energy deficiency caused secondary suppression of CoQ(10) levels possibly due to impaired import of COQ proteins into mitochondria.  相似文献   

6.
7.
Coenzyme Q(10) (CoQ) deficiency syndrome is a disorder of unknown ethiology that may cause different forms of mitochondrial encephalomyopathy. In the present study our aim was to analyse CoQ concentration and mitochondrial respiratory chain (MRC) enzyme activities in muscle biopsies of patients with clinical suspicion and/or biochemical-molecular diagnosis of a mitochondrial disorder. We studied 36 patients classified into 3 groups: 1) 14 patients without a definitive diagnosis of mitochondrial disease, 2) 13 patients with decreased CI + III and II + III activities of the MRC, and 3) 9 patients with definitive diagnosis of mitochondrial disease. Only 1 of the 14 patients of group 1 showed slightly reduced CoQ values in muscle. Six of the 13 patients from group 2 showed partial CoQ deficiency in muscle and 1 of the 9 cases from group 3 presented a slight CoQ deficiency. Significantly positive correlation was observed between CI + III and CII + III activities with CoQ concentrations in the 36 muscle homogenates from patients (r = 0.555; p = 0.001; and r = 0.460; p = 0.005, respectively). In conclusion, measurement of MRC enzyme activities is a useful tool for the detection of CoQ deficiency, which should be confirmed by CoQ quantification.  相似文献   

8.
The main purpose of this study was to determine whether intake of coenzyme Q10, which can potentially act as both an antioxidant and a prooxidant, has an impact on indicators of oxidative stress and the aging process. Mice were fed diets providing daily supplements of 0, 93, or 371 mg CoQ10 /kg body weight, starting at 3.5 months of age. Effects on mitochondrial superoxide generation, activities of oxidoreductases, protein oxidative damage, glutathione redox state, and life span of male mice were determined. Amounts of CoQ9 and CoQ10, measured after 3.5 or 17.5 months of intake, in homogenates and mitochondria of liver, heart, kidney, skeletal muscle, and brain increased with the dosage and duration of CoQ10 intake in all the tissues except brain. Activities of mitochondrial electron transport chain oxidoreductases, rates of mitochondrial O2-* generation, state 3 respiration, carbonyl content, glutathione redox state of tissues, and activities of superoxide dismutase, catalase, and glutathione peroxidase, determined at 19 or 25 months of age, were unaffected by CoQ10 administration. Life span studies, conducted on 50 mice in each group, showed that CoQ10 administration had no effect on mortality. Altogether, the results indicated that contrary to the historical view, supplemental intake of CoQ10 elevates the endogenous content of both CoQ9 and CoQ10, but has no discernable effect on the main antioxidant defenses or prooxidant generation in most tissues, and has no impact on the life span of mice.  相似文献   

9.
Coenzyme Q10 content, pathology evaluation, and electron transport chain (ETC) enzyme analysis were determined in muscle biopsy specimens of 82 children with suspected mitochondrial myopathy. Data were stratified into three groups: "probable" ETC defects, "possible" ETC defects, and disease controls. Muscle total, oxidized, and reduced coenzyme Q10 concentrations were significantly decreased in the probable defect group. Stepwise logistic regression indicated that only total coenzyme Q10 was significantly associated with probable ETC defect. Receiver operator characteristic (ROC) analysis suggested that total muscle coenzyme Q10 was the best predictor of an ETC complex abnormality. Determination of muscle coenzyme Q10 deficiency in children with suspected mitochondrial disease may facilitate diagnosis and encourage earlier supplementation of this agent.  相似文献   

10.
A large number of chemical compounds have been identified which cause peroxisomal proliferation and induce a number of enzymes, mainly those participating in lipid metabolism. Administration of these drugs/chemicals to rats increased coenzyme Q levels in the blood and most of the organs. Levels were raised in all cellular membranes of such organs. The extent of induction of this lipid was 8-fold in young animals but decreased during aging and was absent at 1.5 year of age. One of the regulating factors of the mevalonate pathway is farnesol, which is produced by dephosphorylation of farnesyl-PP and eliminated by phosphorylation including two kinases. Future research will involve a search for modified intermediary metabolites, which increase coenzyme Q synthesis and thereby efficiently elevate the level of this lipid in conditions of deficiency.  相似文献   

11.
Mitochondria from beef heart have been partially depleted of coenzyme Q by pentane extraction. It has been found that lipid peroxidation induced by an adriamycin-iron complex proceeds at a higher rate in this preparation than in coenzyme Q reincorporated mitochondria. Moreover in coenzyme Q depleted mitochondria both NADH and succinate oxidase activities result more affected. These observations indicate that endogenous coenzyme Q can effectively protect mitochondria from membrane lipid oxidative damage induced by adriamycin-iron and can reduce the inactivation of NADH and succinate oxidases.  相似文献   

12.
13.
All animal cells synthesize sufficient amounts of coenzyme Q (CoQ) and the cells also possess the capacity to metabolize the lipid. The main product of the metabolism is an intact ring with a short carboxylated side chain which glucuronidated in the liver and excreted mainly into the bile (Nakamura et al., Biofactors 9 (1999), 111-119). In other cells CoQ is phosphorylated, transferred into the blood and excreted through the urine. The biosynthesis of this lipid is regulated by nuclear receptors. PPARalpha is not required for the biosynthesis, or induction upon cold exposure, but it is necessary for the elevated CoQ synthesis during peroxisomal induction. RXRalpha is involved in the basal synthesis of CoQ and also in the increased synthesis upon cold treatment but is not required for peroxisomal induction. Dietary CoQ in human appear in the blood and it is taken up by mononuclear but not polynuclear cells. The former cells display a specific phospholipid modification, an increase of arachidonic acid content. In monocytes the CoQ administration leads to a significant decrease of the beta2-integrin CD11b and the complement receptor CD35. CD11b is one of the adhesion factors regulating the entry of these cells into the arterial wall which demonstrates that the anti-atherogenic effect of CoQ is mediated by other mechanisms beside its antioxidant protection.  相似文献   

14.
G G Brown  D S Beattie 《Biochemistry》1977,16(20):4449-4454
The reduction of cytochrome c by the reduced form of the 6-decyl analogue of coenzyme Q follows first-order kinetics with respect to cytochrome c and increases in a linear manner with added mitochondrial protein. The activity is completely sensitive to antimycin A in whole cell extracts of yeast as well as in isolated mitochondria and fractionates with markers for the mitochondrial electron-transport chain. The presence of both cytochrome b and c1 in an approximately 2:1 ratio appears essential for enzymatic activity. Reduced coenzyme Q-cytochrome c reductase obeys Michaelis-Menten kinetics when assayed in mitochondria obtained from a yeast strain lacking coenzyme Q. Both reduced nitotinamide adenine dinucleotide and succinate:cytochrome c reductase activities were not detectable in six coenzyme Q deficient strains tested, but were restored after addition of the oxidized form of the coenzyme Q analogue. No marked difference in the concentration of the analogue required to restore the two activities was observed.  相似文献   

15.
Trigeminal neuralgia (TN) is the neuropathic pain. Mitochondrial dysfunction, increased oxidative stress, and inflammation demonstrated in chronic pain. Carbamazepine (CBZ) is the first-line drug for TN, however, it is still insufficient. Coenzyme Q10 (CoQ10) has been used as the additional supplement for pain therapy. Nonetheless, mitochondrial respiratory proteins, oxidative stress, and inflammation in TN, and the add-on effects of CoQ10 on those defects have never been investigated. CBZ-treated TN-patients, naïve TN-patients, and control subjects were included. CBZ-treated TN-patients were randomised into two subgroups, received either CoQ10 or placebo for 2 months. Pain levels were evaluated, and peripheral blood mononuclear cells were isolated to determine the oxidative stress, mitochondrial oxidative phosphorylation (OXPHOS), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and cytokines including TNF-α, IL-1β and IL-18 mRNA expression. Pain scales, oxidative stress, and OXPHOS levels were greater in naïve TN-patients than control, whereas the cytokine profiles were unchanged. Although pain scales were lower in CBZ-treated TN-patients than in naïve TN-patients, oxidative stress, OXPHOS, and cytokine expression profiles were not different. PGC-1α levels found to be increased in CBZ-treated TN patients when compared with the naïve group. CoQ10 supplement in CBZ-treated TN patients reduced pain scale and oxidative stress and increased antioxidants levels when compared with placebo group. However, OXPHOS, PGC-1α, and cytokines were not different between groups. These findings suggest that increased oxidative stress could be potentially involved in the pathogenesis of TN. CoQ10 supplements can reduce oxidative stress, leading to more effective pain reduction in TN patients being treated with CBZ.  相似文献   

16.
A quantitative method for the determination of coenzyme Q10 (CoQ10) in human blood has been devised which allows recovery of essentially 100% of the CoQ10. The use of whole blood rather than plasma includes the CoQ10 in white cells. The method utilizes TLC instead of saponification to fractionate lipid impurities, because CoQ10 is sensitive to saponification, and utilizes CoQ11 as an internal standard which is advantageous over CoQ9 and a synthetic quinone. The final step of HPLC frequently reveals a peak with a retention time like that of CoQ9 which, being less than that of CoQ10, can be near other peaks of impurities.  相似文献   

17.
Ubiquinone (coenzyme Q; CoQ) is the only lipophilic antioxidant that is endogenously synthesized by all organisms. CoQ biosynthesis is determined in vitro by supplying a radiolabeled precursor and, after lipid extraction and CoQ separation by thin-layer chromatography or high-performance liquid chromatography, the radioactivity present in the sample is quantified. In the rapid and simple method described here, we avoid the use of organic solvents by supplying 4-hydroxy-[U-14C]benzoate as radiolabeled precursor and precipitating CoQ with trichloroacetic acid (TCA). After TCA precipitation, all radioactivity was present in the precipitate and CoQ was the only radiolabeled molecule detected. The radioactive material was then solubilized with NaOH and quantified in a scintillation counter.  相似文献   

18.
The aim of the study was to show whether the ACE inhibitor captopril is able to protect the heart against the deleterious effect of passive cigarette smoking on left ventricular mitochondria. Four groups of rabbits were investigated: control (C), passive smoking of three cigarettes twice daily/30 minutes (S), control + captopril (7.5 mg/kg body weight twice daily) (Cap), and smoking + captopril (SCap) as in group 2 and 3. Three weeks lasting passive smoking impaired oxidative phosphorylation, diminished cytochrome oxidase activity and increased the mitochondrial F1-ATPase protein concentration. Moreover, the level of coenzyme Q10 (CoQ10) and coenzyme Q9 were decreased. Simultaneous treatment with captopril prevented partly the decrease of CoQ10 level, deterioration of oxidative phosphorylation, diminution of cytochrome oxidase activity and enhancement of F1-ATPase level. We conclude that captopril protected the myocardium against the harmful effect of passive smoking in rabbits.  相似文献   

19.
20.
Cardiolipin (CL) is an acidic phospholipid present almost exclusively in membranes harboring respiratory chain complexes. We have previously shown that, in Saccharomyces cerevisiae, CL provides stability to respiratory chain supercomplexes and CL synthase enzyme activity is reduced in several respiratory complex assembly mutants. In the current study, we investigated the interdependence of the mitochondrial respiratory chain and CL biosynthesis. Pulse-labeling experiments showed that in vivo CL biosynthesis was reduced in respiratory complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) and oxidative phosphorylation complex V (ATP synthase) assembly mutants. CL synthesis was decreased in the presence of CCCP, an inhibitor of oxidative phosphorylation that reduces the pH gradient but not by valinomycin or oligomycin, both of which reduce the membrane potential and inhibit ATP synthase, respectively. The inhibitors had no effect on phosphatidylglycerol biosynthesis or CRD1 gene expression. These results are consistent with the hypothesis that in vivo CL biosynthesis is regulated at the level of CL synthase activity by the DeltapH component of the proton-motive force generated by the functional electron transport chain. This is the first report of regulation of phospholipid biosynthesis by alteration of subcellular compartment pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号