首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood platelets have the capacity to participate in a number of physiological as well as pathological processes within the circulation. In order to evaluate their cellular reactivity a number of platelet function tests have been developed. The mainin vitro function tests are assessment of aggregation and adhesion, secretion, arachidonate metabolism, coagulant activities and the characterization of surface membrane glycoproteins (Day and Rao, 1986). Here we measure alterations of the G-/F-actin equilibrium of platelets. High F-actin values of unstimulated platelets indicate a hyperreactivity of the cell as examined in platelets from diabetics. Determination of the actin filament content in platelets can be considered as a new sensitive function test.  相似文献   

2.
Actin filament organization in the fish keratocyte lamellipodium   总被引:17,自引:7,他引:10       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1275-1286
From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.  相似文献   

3.
We investigated the actin filament organization and immunolocalization of actin-binding proteins (α-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with α-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.  相似文献   

4.
Actin filament organization of foot processes in rat podocytes.   总被引:14,自引:0,他引:14  
The foot processes of podocytes possess abundant microfilaments and modulate glomerular filtration. We investigated the actin filament organization of foot processes in adult rat podocytes and the formation of the actin cytoskeletal system of immature podocytes during glomerulogenesis. Electron microscopy revealed two populations of actin cytoskeletons in foot processes of adult podocytes. One is the actin bundle running above the level of slit diaphragms and the other is the cortical actin network located beneath the plasmalemma. Immunogold labeling for actin-binding proteins demonstrated that alpha-actinin and synaptopodin were localized in the actin bundle, whereas cortactin was in the cortical actin network. Immunofluorescence labeling for actin-binding proteins in immature podocyte showed that alpha-actinin was localized at the level of the junctional complex, whereas cortactin was distributed beneath the entire plasmalemma. Synaptopodin was first observed along the basal plasmalemma from the advanced S-shaped body to the capillary loop stage. We conclude that foot processes have specialized actin filamentous organization and that its establishment is associated with the expression and redistribution of actin-binding proteins during development.  相似文献   

5.
Equatorial intensity distributions of x-ray diffraction patterns from relaxed and contracted states of the anterior byssus retractor muscle, ABRM, are compared with distributions of non-physiological reference states and with calculations based on various packing models of the actin filaments. Relaxed and contracted muscles provide distributions that agree with models, in which actin filaments are packed hexagonally in discrete areas containing 12 to 16 filaments. The crystalline fractions of actin filaments in the relaxed and contracted states are 0.91 and 0.57 respectively. Contracting muscles, however, show deviations from the calculated distributions at small angles of diffraction. This is interpreted as being due to the fact that actin filaments, outside crystalline areas, are decorated by crossbridges as about every 6th actin monomer.  相似文献   

6.
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.  相似文献   

7.
Previous studieshave indicated a role of the actin cytoskeleton in the regulation ofthe cystic fibrosis transmembrane conductance regulator (CFTR) ionchannel. However, the exact molecular nature of this regulation isstill largely unknown. In this report human epithelial CFTR wasexpressed in human melanoma cells genetically devoid of the filaminhomologue actin-cross-linking protein ABP-280 [ABP()]. cAMP stimulation of ABP() cells orcells genetically rescued with ABP-280 cDNA [ABP(+)] waswithout effect on whole cell Cl currents. InABP() cells expressing CFTR, cAMP was also without effect onCl conductance. In contrast, cAMP induced a 10-foldincrease in the diphenylamine-2-carboxylate (DPC)-sensitive whole cellCl currents of ABP(+)/CFTR(+) cells. Further, incells expressing both CFTR and a truncated form of ABP-280 unable tocross-link actin filaments, cAMP was also without effect on CFTRactivation. Dialysis of ABP-280 or filamin through the patch pipette,however, resulted in a DPC-inhibitable increase in the whole cellcurrents of ABP()/CFTR(+) cells. At the single-channel level,protein kinase A plus ATP activated single Clchannels only in excised patches from ABP(+)/CFTR(+) cells.Furthermore, filamin alone also induced Cl channelactivity in excised patches of ABP()/CFTR(+) cells. The presentdata indicate that an organized actin cytoskeleton is required forcAMP-dependent activation of CFTR.

  相似文献   

8.
The amount of actin and total protein per cell in normal rat kidney (NRK) cells in culture is initially high in very low density cultures, but rapidly decreases as the cells come into contact in higher density cultures. In a viral transformant of NRK (442), the level of actin and total protein does not change significantly from low to high density cultures. NRK cells, which are flattened against the substrate, have prominent bundles of actinlike microfilaments in the basal cytoplasm adjacent to the substrate. 442 cells, which adhere poorly and are more spherical in shape, lack well-organized basal microfilament bundles, but may display microfilament bundles in cytoplasmic processes extending from the cell body. The percentage of insoluble actin is less than 20% in both cell lines, and 442 cells consistently contain smaller amounts than NRK cells.  相似文献   

9.
Lenartowska M  Michalska A 《Planta》2008,228(5):891-896
The actin cytoskeleton plays a crucial role in pollen tube growth. In elongating pollen tubes the organization and arrangement of actin filaments (AFs) differs between the shank and apical region. However, the orientation of AFs in pollen tubes has not yet been successfully demonstrated. In the present work we have used myosin II subfragment 1 (S1) decoration to determine the polarity of AFs in pollen tubes. Electron microscopy studies revealed that in the shank of the tube bundles of AFs exhibit uniform polarity with those close to the cell cortex having their barbed ends oriented towards the tip of the pollen tube while those in the cell center have their barbed ends oriented toward the base of the tube. At the subapex, some AFs are organized in closely packed and longitudinally oriented bundles and some form curved bundles adjacent to the cell membrane. In contrast, few AFs are dispersed with random orientation in the extreme apex of the pollen tube. Our results confirm that the direction of cytoplasmic streaming within pollen tubes is determined by the polarity of AFs in the bundles.  相似文献   

10.
《The Journal of cell biology》1994,126(4):1005-1015
Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells.  相似文献   

11.
Ca2+ homeostasis in unstimulated platelets   总被引:4,自引:0,他引:4  
Unstimulated platelets maintain a low cytosolic free Ca2+ concentration and a steep plasma membrane Ca2+ gradient. The mechanisms that are required have not been completely defined. In the present studies, 45Ca2+ was used to examine the kinetics of Ca2+ exchange in intact unstimulated platelets. Quin2 was used to measure the cytosolic free Ca2+ concentration. Under steady-state conditions, the maximum rate of Ca2+ exchange across the platelet plasma membrane, 2 pmol/10(8) platelets/min, was observed at extracellular free Ca2+ concentrations 20-fold less than in plasma. Two intracellular exchangeable Ca2+ pools were identified. The size of the more rapidly exchanging pool (t 1/2, 17 min) and the cytosolic free Ca2+ concentration were relatively unaffected by large changes in the extracellular Ca2+ concentration. In contrast, the size of the more slowly exchanging Ca2+ pool (t 1/2, 300 min) varied with the extracellular Ca2+ concentration, which suggests that it is physically as well as kinetically distinct from the rapidly exchangeable Ca2+ pool. The locations of the Ca2+ pools were determined by differential permeabilization of 45Ca2+-loaded platelets with digitonin. 45Ca2+ in the rapidly exchanging pool was released with lactate dehydrogenase, which suggests that it is located in the cytosol. 45Ca2+ in the slowly exchanging pool was released with markers for both the dense tubular system and mitochondria, but inhibition of mitochondrial Ca2+ uptake with carbonyl cyanide m-chlorophenylhydrazone had no effect on the size of the slowly exchangeable Ca2+ pool or the cytosolic free Ca2+ concentration. In contrast, addition of metabolic inhibitors (KCN plus carbonyl cyanide m-chlorophenylhydrazone plus deoxyglucose) or trifluoperazine caused a decrease in the size of the slowly exchangeable Ca2+ pool and an increase in the cytosolic free Ca2+ concentration. These observations suggest that Ca2+ homeostasis in unstimulated platelets is maintained by limiting Ca2+ influx from plasma, actively promoting Ca2+ efflux, and sequestering Ca2+ within an internal site, which is most likely the dense tubular system and not mitochondria.  相似文献   

12.
Actin filament disassembly in blood plasma   总被引:10,自引:0,他引:10  
  相似文献   

13.
Cofilin is essential for cell viability and for actin-based motility. Cofilin severs actin filaments, which enhances the dynamics of filament assembly. We investigated the mechanism of filament severing by cofilin with direct fluorescence microscopy observation of single actin filaments in real time. In cells, actin filaments are likely to be attached at multiple points along their length, and we found that attaching filaments in such a manner greatly increased the efficiency of filament severing by cofilin. Cofilin severing increased and then decreased with increasing concentration of cofilin. Together, these results indicate that cofilin severs the actin filament by a mechanism of allosteric and cooperative destabilization. Severing is more efficient when relaxation of this cofilin-induced instability of the actin filament is inhibited by restricting the flexibility of the filament. These conclusions have particular relevance to cofilin function during actin-based motility in cells and in synthetic systems.  相似文献   

14.
Actin: protein structure and filament dynamics   总被引:16,自引:0,他引:16  
  相似文献   

15.
Actin filament destruction by osmium tetroxide   总被引:48,自引:39,他引:9  
We have studied the destruction of purified muscle actin filaments by osmium tetroxide (OsO4) to develop methods to preserve actin filaments during preparation for electron microscopy. Actin filaments are fragmented during exposure to OsO4. This causes the viscosity of solutions of actin filaments to decrease, ultimately to zero, and provides a convenient quantitative assay to analyze the reaction. The rate of filament destruction is determined by the OsO4 concentration, temperature, buffer type and concentration, and pH. Filament destruction is minimized by treatment with a low concentration of OsO4 in sodium phosphate buffer, pH 6.0, at 0 degrees C. Under these conditions, the viscosity of actin filament solutions is stable and actin filaments retain their straight, unbranched structure, even after dehydration and embedding. Under more severe conditions, the straight actin filaments are converted into what look like the microfilament networks commonly observed in cells fixed with OsO4. Destruction of actin filaments can be inhibited by binding tropomyosin to the actin. Cross-linking the actin molecules within a filament with glutaraldehyde does not prevent their destruction by OsO4. The viscosity decrease requires the continued presence of free OsO4. During the time of the viscosity change, OsO4 is reduced and the sulfur-containing amino acids of actin are oxidized, but little of the osmium is bound to the actin. Over a much longer time span, the actin molecules are split into discrete peptides.  相似文献   

16.
Actin filament distribution in blocked and developing pig embryos   总被引:2,自引:0,他引:2  
Actin filaments play an important role in cell division. The present study was designed to examine the relationship between actin filament distribution and pig embryo development. When in vivo matured and fertilised pig oocytes were cultured in TCM 199 or NCSU 23, in various proportions, 45-65% of inseminated oocytes developed to the 2- to 4-cell stages but blastocyst development was observed only in NCSU 23 (34%) or NCSU 23 containing 10% TCM 199 (7%). Supplementation of NCSU 23 medium with 20% or more TCM 199 resulted in no blastocyst formation. Examination of actin filaments indicated that microfilaments were distributed in the cortex, at the junction of blastomeres and in the perinuclear area in the embryos cultured in NCSU 23, but perinuclear actin filaments were not observed in embryos cultured in TCM 199. When 2- to 4-cell stage embryos obtained from TCM 199 were transferred to NCSU 23 medium at 36 h after in vivo fertilisation, 57% of the cleaved embryos developed to blastocysts, which was no different from the proportion obtained after culture in NCSU 23 alone (56%). In addition, when 2- to 4-cell stage embryos obtained from TCM 199 were transferred to NCSU 23, most embryos showed perinuclear actin filaments within 6h. The results indicate that the composition of the culture medium plays an important role in the polymerisation of actin filaments, which in turn influences embryo development. It is possible that pig embryo development was blocked by some components in TCM 199 which prevented actin filament polymerisation.  相似文献   

17.
Actin filaments, assembled from highly purified actin from either skeletal muscle or Dictyostelium amoebae, are very stable under physiological ionic conditions. A small and limited amount of exchange of actin filament subunits for unpolymerized actin or subunits in other filaments has been measured by three techniques: fluorescence energy transfer, incorporation of 35S-labelled actin monomers into unlabelled actin filaments, and exchange of [14C]ATP with filament-bound ADP. A 40 kDa protein purified from amoebae destabilizes these otherwise stable filaments in a Ca2+-dependent manner. Myosin purified from Dictyostelium amoebae is phosphorylated both in the tail region of the heavy chain and in one of the light chains. Phosphorylation appears to regulate myosin thick-filament formation.  相似文献   

18.
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.  相似文献   

19.
Hu X  Kuhn JR 《PloS one》2012,7(2):e31385
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.  相似文献   

20.
Actin cytoskeleton of resting bovine platelets   总被引:2,自引:0,他引:2  
Actin filaments in resting discoid bovine platelets were examined by fluorescence and electron microscopy. Rhodamine-phalloidin staining patterns showed a characteristic wheel-like structure which consisted of a central small circle connected by several radial spokes to a large peripheral circle. This wheel-like structure was composed of actin filaments forming a characteristic arrowhead structure with heavy meromyosin from muscle. Actin filaments were densely arrayed in parallel with a marginal microtubule band and radiated out from the center to the periphery. Platelets treated with colchicine lost their marginal microtubule band but retained their wheel-like structure and normal discoid form. Cytochalasin B disrupted the wheel-like structure but not the marginal microtubule band or the normal discoid form. After simultaneous treatment with both cytochalasin B and colchicine, platelets lost their discoid shape. These results suggest that actin filaments and microtubules both play important roles in the maintenance of the discoid shape of resting bovine platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号