首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model. The validation of the scalability of the PI growth model to predict productivity in large-scale systems was done by comparison with experimental growth data collected from two geometrically different large-scale photobioreactors operated at a variety of light intensities. For direct comparison, the small-scale and large-scale experimental systems presented were operated similarly and in such a way to incorporate cultivation relevant time scales, light intensities, mixing, and nutrient loads. Validation of the scalability of the PI growth model enables the critical evaluation of different photobioreactor geometries and design optimization incorporating growth effects from diffuse and direct light. Discussion focuses on the application of the PI growth model to assess the effect of diffuse light growth compared to direct light growth for the evaluation of photobioreactors followed by the use of the model for photobioreactor geometry optimization on the metric of areal productivity.  相似文献   

2.

Background

Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates.

Results

In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19–24 g m?2 day?1 and 2.4–4.2 %, respectively, were found in comparison to the horizontal systems; 12–15 g m?2 day?1 and 1.5–1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m?2 day?1. Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond.

Conclusions

Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
  相似文献   

3.
Exploitation of photosynthetic cells for the production of useful metabolites requires efficient photobioreactors. Many laboratory scale photobioreactors have been reported but most of them are extremely difficult to scale up. Furthermore, the use of open ponds and outdoor tubular photobioreactors is limited by the requirement for large spaces and the difficulty in maintaining sterile conditions. In view of this, we have designed and constructed an internally illuminated stirred tank photobioreactor. The photobioreactor is simple, heat sterilizable and mechanically agitated like the conventional stirred tank bioreactors. Furthermore, it can easily be scaled up while maintaining the light supply coefficient and thus the productivity constant. A device was installed for collecting solar light and distributing it inside the reactor through optical fibers. It was equipped with a light tracking sensor so that the lenses rotate with the position of the sun. This makes it possible to use solar light for photosynthetic cell cultivation in indoor photobioreactors. As a solution to the problems of night biomass loss and low productivity on cloudy days, an artificial light source was coupled with the solar light collecting device. A light intensity sensor monitors the solar light intensity and the artificial light is automatically switched on or off, depending on the solar light intensity. In this way, continuous light supply to the reactor is achieved by using solar light during sunny period, and artificial light at night and on cloudy days.  相似文献   

4.
Analysis of light energy distribution in culture is important for maximizing the growth efficiency of photosynthetic cells and the productivity of a photobioreactor. To characterize the irradiance conditions in a photobioreactor, we developed a light distribution model for a single-radiator system and then extended the model to multiple radiators using the concept of parallel translation. Mathematical expressions for the local light intensity and the average light intensity were derived for a cylindrical photobioreactor with multiple internal radiators. The proposed model was used to predict the irradiance levels inside an internally radiating photobioreactor using Synechococcus sp. PCC 6301 as a model photosynthetic microorganism. The effects of cell density and radiator number were interpreted through photographic and model simulation studies. The predicted light intensity values were found to be very close to those obtained experimentally, which suggests that the proposed model is capable of accurately interpreting the local light energy profiles inside the photobioreactor system. Due to the simplicity and flexibility of the proposed model, it was also possible to predict the light conditions in other complex photobioreactors, including optical-fiber and pond-type photobioreactors.  相似文献   

5.
Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.  相似文献   

6.
Flat‐plate photobioreactors (FPPBRs) are widely reported for cultivation of microalgae. In this work, a novel FPPBR mounted with inclined baffles was developed, which can make the fluid produce a “spirality” flow. The flow field and cell trajectory in the photobioreactor were investigated by using computational fluid dynamics. In addition, the cell trajectory was analyzed using a Fast Fourier transformation. The influence of height of the baffles, the angle α between the inclined baffle and fluid inlet flow direction (z), and the fluid inlet velocity on the frequency of flashing light effect and pressure drop were examined to optimize the structure parameters of the inclined baffles and operating conditions of the photobioreactor. The results showed that with inclined baffles built‐in, significant swirl flow could be generated in the FPPBR. In this way, the flashing light effect for microalgal cell could also be achieved and the photosynthesis efficiency of microalgae could be promoted. In outdoor cultivation of freshwater Chlorella sp., the maximum biomass productivity of Chlorella sp. cultivated in the photobioreactor with inclined baffles was 29.94% higher than that of the photobioreactor without inclined baffles. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

7.
微藻具有固定CO2和净化有机废水的能力,在环保、食品饲(饵)料、医药和生物能源开发等领域备受关注,但规模化培养及其产业化仍是研究的难点,亟待解决。就常用于大规模培养微藻的光生物反应器的特点和结构进行了综述。其中,封闭式微藻光生物反应器能够较好地调控藻种的培养条件、不易遭受污染,藻种的纯度容易控制,但培养规模小,生产成本较高;而开放式微藻光生物反应器无法精确控制藻种生长环境,但生产规模大、产量高、生产成本低,因此应用广泛。最佳的方法是综合两者优点,即首先利用封闭式微藻光生物反应器进行中试放大,大量繁殖藻种,然后投入开放式微藻光生物反应器内进行大规模商业生产,此方法有望成为微藻光生物反应器的发展方向,以期为微藻大规模培养提供参考借鉴。  相似文献   

8.
Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.  相似文献   

9.
Due to their versatility and the high biomass yield produced, cultivation of phototrophic organisms is an increasingly important field. In general, open ponds are chosen to do it because of economic reasons; however, this strategy has several drawbacks such as poor control of culture conditions and a considerable risk of contamination. On the other hand, photobioreactors are an attractive choice to perform cultivation of phototrophic organisms, many times in a large scale and an efficient way. Furthermore, photobioreactors are being increasingly used in bioprocesses to obtain valuable chemical products. In this review, we briefly describe different photobioreactor set‐ups, including some of the recent designs, and their characteristics. Additionally, we discuss the current challenges and advantages that each different type of photobioreactor presents, their applicability in biocatalysis and some modern modeling tools that can be applied to further enhance a certain process.  相似文献   

10.
As photosynthetic efficiencies are relatively high at irradiation levels of <500 micromol m(-2) s(-1), photosynthetic productivity could be increased by redistributing strong light over a larger photo-receiving area using conical, helical, tubular photobioreactors (HTP). When Chlorella were exposed to light irradiation of 980 micromol m(-2) s(-1), the ratio of productivities was 1.00:1.13:1.23:1.66 for conical HTPs with cone angles of 180 degrees (flat type), 120 degrees, 90 degrees, and 60 degrees, respectively. This suggests that photo-redistribution technology is a highly effective and convenient approach for increasing the photosynthetic productivity of microalgae.  相似文献   

11.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
It has been reported that flashing light enhances microalgal biomass productivity and overall photosynthetic efficiency. The algal growth kinetics and oxygen production rates under flashing light with various flashing frequencies (5 Hz-37 kHz) were compared with those under equivalent continuous light in photobioreactors. A positive flashing light effect was observed with flashing frequencies over 1 kHz. The oxygen production rate under conditions of flashing light was slightly higher than that under continuous light. The cells under the high frequency flashing light were also observed to be healthier than those under continuous light, particularly at higher cell concentrations. When 37 kHz flashing light was applied to an LED-based photobioreactor, the cell concentration was higher than that obtained under continuous light by about 20%. Flashing light may be a reasonable solution to overcome mutual shading, particularly in high-density algal cultures.  相似文献   

13.
A detailed knowledge about the dynamics of phytoplanktonic photosynthesis and respiration is crucial for the determination of primary productivity in open oceans as well as for biotechnological applications. The dynamics are best studied in photobioreactors that are able to simulate natural conditions in such, that light can be modulated not only diurnally but also mimicking effects of solar elevation angle from sunrise to sunset, variable cloudiness, light modulation in refractory sun flecks due to water waves, or light intermittence due to turbulent flow in dense suspensions. In addition, high performance photobioreactors ought to be able to monitor in real time photosynthetic and respiratory activities as well as culture growth. Here, we demonstrate performance of a newly designed bench‐top laboratory photobioreactor that meets these needs, with a study of green alga Scenedesmus quadricauda. The algal suspension was exposed to simulated daily variations of total photosynthetic active irradiance and spectral profile, with a larger proportion of red photons in the morning and evening hours. The instrument monitored automatically the culture growth by measuring the optical densities at 735 nm and 680 nm and by measuring steady state and maximal chlorophyll fluorescence emission yields. The photochemical yields were estimated from chlorophyll fluorescence data. These widely used but rather indirect yield estimates were confronted with direct measurements of oxygen evolution and consumption quantum yields. The CO2 fluxes in and out of the culture media as well as the dissolved CO2 in algal suspension were also recorded. The experiments demonstrated potential of the new photobioreactor to reveal minute modulations in gas exchange rates as well as to yield data for calculation of photon requirement of oxygen evolution in the suspension volume that is key technological parameter for planning of large scale photobioreactors as well as key optimization parameter for strain selection.  相似文献   

14.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

15.
Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing‐induced flashing light regimes. In this study, photosynthetic efficiency and growth of the green microalga Chlamydomonas reinhardtii were measured using LED light to simulate light/dark cycles ranging from 5 to 100 Hz at a light‐dark ratio of 0.1 and a flash intensity of 1000 µmol m−2 s−1. Light flashing at 100 Hz yielded the same photosynthetic efficiency and specific growth rate as cultivation under continuous illumination with the same time‐averaged light intensity (i.e., 100 µmol m−2 s−1). The efficiency and growth rate decreased with decreasing flash frequency. Even at 5 Hz flashing, the rate of linear electron transport during the flash was still 2.5 times higher than during maximal growth under continuous light, suggesting storage of reducing equivalents during the flash which are available during the dark period. In this way the dark reaction of photosynthesis can continue during the dark time of a light/dark cycle. Understanding photosynthetic growth in dynamic light regimes is crucial for model development to predict microalgal photobioreactor productivities. Biotechnol. Bioeng. 2011;108: 2905–2913. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.  相似文献   

17.
Designing photobioreactors correctly is a must for the success of microalgal mass production. Optimal photobioreactor design requires a precise knowledge of photosynthesis dynamics in fluctuating light conditions and hence a method for the measurement of photosynthetic rates in specific light regimes. However, it is not uncommon in literature that experimental protocols used to obtain oxygen generation rates are described ambiguously and the reported rates of photosynthesis vary widely depending on the methodology. Additionally, quite a number of methods overlook certain aspects that can affect the estimated rates significantly, and can therefore affect photobioreactor design. We have developed a method based on oxygen evolution measurements that accurately determines photosynthetic rates under well‐defined light regimes. Our experimental protocol takes into account most of the issues that can affect the rates of oxygen generation, such as depletion of nutrients during the measurements and precision of the measurements. We have focused on the basic applications in photobioreactor design and used a dynamic model of photosynthesis to analyze our results and compare them with available published data. The results suggest that our oxygen evolution method is consistent. Biotechnol. Bioeng. 2010;106: 228–237. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Volumetric productivity of Monodus subterraneus cultivated in an outdoor pilot-plant bubble column was predicted with a mathematical model. Two border cases to model the photobioreactor were chosen. Firstly, a model with no light integration in which it is assumed that microalgae can adapt immediately to local light conditions. Secondly, full light integration implicating that microalga can convert all absorbed light with a photosynthetic yield based on average light intensity. Because temperature and light conditions in our photobioreactor changed during the day, photosynthetic yields at any combination of temperature and light intensity were needed. These were determined in repeated-batch lab-scale experiments with an experimental design. The model was evaluated in an outdoor bubble column at different natural light conditions and different temperatures. Volumetric productivities in the bubble column were predicted and compared with experimental volumetric productivities. The light integration model over-estimated productivity, while the model in which we assumed no light integration under-estimated productivity. Light integration occurred partly (47%) during the period investigated. The average observed biomass yield on light was 0.60 g.mol(-1). The model of partly light integration predicted an average biomass yield on light of 0.57 g.mol(-1) and predicted that productivity could have been increased by 19% if culture temperature would have been maintained at 24 degrees C.  相似文献   

19.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   

20.
Until recently, most large commercial scale microalgal production systems employed open systems. However, several large-scale closed systems have now been built and, for the first time, actual comparisons can be made. There are major operational differences between open and closed photobioreactors and, consequently, the growth physiology of the microalgae is different between the two systems. Several of the factors governing growth can, within certain boundaries, be manipulated while others are specific to the cultivation system. Crucial factors are the optical depth, turbulence, light acclimated state of the organism, nutrient availability and metabolite accumulation. In the final analyses, systems are used for specific purposes and each will determine which system is the most suitable, since there is no universal all-purpose photobioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号