首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The larva of the amphibian species, Pleurodeles waltl was shown to metabolize benzo(a)pyrene in vivo into a variety of oxidized products. 2. In vitro, BaP hydroxylase (AHH) activity was found in hepatic microsomes and postmitochondrial fractions from both larvae and adults of the pleurodele. 3. The clastogenic effect of BaP formation of micronuclei in the erythrocytes was shown to be related to the presence of BaP quinones in the tissues of the newt.  相似文献   

2.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

3.
The metabolism of radiolabeled benzo[a]pyrene (BP) by control, 3-methyl-cholanthrene (3-MC) induced, and 1,1,1-trichloropropene-2,3-oxide (TCPO)-inhibited rat liver microsomes was measured using fluorescence, radiometric, and high-pressure liquid chromatographic (HPLC) assays. Significant differences in the total measurable metabolism of BP by the three microsomal enzyme incubations resulted from the use of the three assay procedures. Appreciable differences in the concentration of the metabolite fractions after 3-MC induction and TCPO inhibition are clearly demonstrated. NMR analysis revealed that while the 3-hydroxy-BP fraction is greater than 90% pure, the 9-hydroxy fraction contains a number of metabolites having essentially identical retention times.  相似文献   

4.
The metabolism of (3H)-benzo(a)pyrene and the activities of enzymes involved in its metabolism were studied in rat lung and liver in vitamin A deficiency. Deficiency of vitamin A resulted a significant decrease in the overall metabolism of benzo(a)pyrene in the liver in vitro, whereas no significant difference was evident in the lung. The ethyl acetate-soluble metabolites of benzo(a)pyrene formed by lung and liver preparations were unaltered qualitatively by vitamin A deficiency. However, quantitative analysis revealed that vitamin A deficiency decreased the yield of dihydrodiols, quinones and phenols in liver, and dihydrodiols in lung. The hepatic cytochrome P-450 content, arylhydrocarbon hydroxylase and uridine diphosphate-glucuronosyl transferase activities were reduced, whereas glutathione S-transferase activity was increased in the vitamin A deficient animals. Contrary to this, pulmonary cytochrome P-450 content was above the control values (p less than 0.01) and no alteration in pulmonary arylhydrocarbon hydroxylase activity was observed in vitamin A deficient rats. Uridine diphosphate-glucuronosyltransferase and glutathione S-transferase activities were impaired in lung by inducing vitamin A deficiency. However, no significant difference was evident in the overall metabolism of benzo(a)pyrene by lung supernatants from the two groups.  相似文献   

5.
A cloned strain of bovine vascular endothelial cells with a finite in vitro lifespan was treated with benzo(a)pyrene (BP) after approximately 75% of its lifespan was completed. Untreated cultures of this strain senesced upon serial subcultivation and contained large, nondividing cells. In three out of seven trials, BP treatment produced transformed cells appeared in the cultures concomitant with the senescence of the parent cells. All transformed cell lines examined exhibited indefinite lifespans and altered karyotypes. Two of the lines retained most of the characteristics of normal endothelial cells, except that one became aneuploid and the other polyploid, Neither of these lines formed tumors when inoculated into nude mice. The remaining two lines retained mostly diploid kayotypes, but a high percentage of cells contained Robertsonian translocations. In one line cell volume was markedly reduced. In addition, these lines grew in multilayers, were anchorage independent, and proliferated in medium containing 0.5% serum. When 107 cells of these lines were injected into nude mice, tumors appeared within 1 week and were identified as malignant hemangioendotheliomas of bovine origin.  相似文献   

6.
Benzo[a]pyrene (BaP), an environmental carcinogen, shows genotoxicity after metabolic transformation into the bay-region diol epoxide, BaP-7,8-diol 9,10-epoxide. 10-Azabenzo[a]pyrene (10-azaBaP), in which a ring nitrogen is located in the bay-region, is also a carcinogen and shows mutagenicity in the Ames test in the presence of the rat liver microsomal enzymes. In order to evaluate the effect of aza-substitution on in vivo genotoxicity, BaP and 10-azaBaP were assayed for their in vivo mutagenicity using the lacZ-transgenic mouse (MutaMouse). BaP was potently mutagenic in all of the organs examined (liver, lung, kidney, spleen, forestomach, stomach, colon, and bone marrow), as described in our previous report, whereas, 10-azaBaP was slightly mutagenic only in the liver and colon. The in vitro mutagenicities of BaP and 10-azaBaP were evaluated by the Ames test using liver homogenates prepared from several sources, i.e. CYP1A-inducer-treated rats, CYP1A-inducer-treated and non-treated mice, and humans. BaP showed greater mutagenicities than 10-azaBaP in the presence of a liver homogenate prepared from CYP1A-inducer-treated rodents. However, 10-azaBaP showed mutagenicities similar to or more potent than BaP in the presence of a liver homogenate or S9 from non-treated mice and humans. These results indicate that 10-aza-substitution markedly modifies the nature of mutagenicity of benzo[a]pyrene in both in vivo and in vitro mutagenesis assays.  相似文献   

7.
The effect of various co- and anti-carcinogens of colon carcinogenesis on the metabolism of benzo(a)pyrene (BP) in cultured rat colon is reported. Rat colon enzymatically converted BP into metabolites which bind to cellular macromolecules i.e., DNA and protein. Activity of aryl hydrocarbon hydroxylase (AHH) activity and binding levels of BP to macromolecules were higher in the descending colon when compared to other segments. The major metabolites of BP, extractable with ethylacetate, were quinones, tetrols, 7,8-diol and a peak containing 9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene and 7,8,9-trihydroxy-7,8-dihydrobenzo(a)pyrene. The binding levels of BP to DNA and protein in the explant was lowered by co-incubation with 7,8-benzoflavone (7,8-BF) (3.6 and 18.0 μM), a known inhibitor of AHH, and with disulfiram (100 μM), an anti-oxidant. The absence of vitamin A in the media also resulted in a lower level of BP binding to DNA and protein and in lower activity of AHH. Pretreatment with known inducers of AHH such as phenobarbital (PB) or benz(a)anthracene (BA), did not have any significant effect on the binding levels of BP to DNA or on the AHH activity. of the bile acids investigated only taurodeoxycholic acid significantly increased the binding level of BP to DNA.  相似文献   

8.
Vitamin K1 (2-methyl-3-phytyl-1,4-napthoquinone) increases the microsomal metabolism of benzo(a)pyrene in rat liver microsomes in vitro. The increase is most marked in the 9,10 diol, 4,5 diol and 3-OH metabolites. The effect is seen at an in vitro concentration of 25 microM and disappears at higher concentrations of K1. The production of BP metabolite-DNA adducts in liver in vivo in ICR/Ha mice is reduced in dietary induced vitamin K deficient mice and this effect is reversed by vitamin K1. These findings indicate a role for vitamin K1 in the regulation of the microsomal mixed function oxidase system and suggest a reason for the low intracellular content and minimal body stores of this vitamin.  相似文献   

9.
The metabolism of benzo[a]pyrene (BP) by microsomal fractions of the skin, lungs and liver of the mouse, and the effects on this process of pretreatment with the xenobiotics phenobarbital (PB) and 3-methylcholanthrene (3-MC) were examined. Differences between the untreated tissues were found both in terms of the total amounts of diol recovered and in the relative proportions of the individual diols extracted following incubation. Induction with PB or 3-MC significantly altered the profiles of metabolic diols obtained with epidermal and hepatic microsomes compared with their respective controls. Pulmonary microsomes showed similar trends to those obtained with liver microsomes but these were not statistically significant. The optical purity of the BP-7,8-diol that was formed by each microsomal type was examined by direct resolution of the enantiomers on HPLC using a chiral stationary phase. In each case the (-)-7R,8R-enantiomer predominated. Pretreatment with 3-MC significantly decreased the optical purity of BP-7,8-diol recovered from incubations with skin microsomes, but significantly increased the optical purity of the diol extracted from incubations with lung and liver microsomes. In addition to the diols, an unidentified BP metabolite was found that eluted between BP-9,10- and 4,5-diol on a reverse-phase high-performance liquid chromatography (HPLC) system and which represented a major product in extracts of incubations of BP with both induced and uninduced skin and lung microsomal fractions.  相似文献   

10.
The present study was carried out to determine the effects of agents that influence benzo[a]pyrene (BP) metabolism in vitro on the irreversible binding of BP to rat hepatic macromolecules in vivo. The irreversible binding of [3H]BP was found to be both dose and time dependent after its intraperitoneal administration to male Wistar rats. The SKF 525-A, at doses of 50 and 75 mg/kg, ip 3 h before BP, decreased the level of binding from control by 31 and 34%, respectively. At 35 mg/kg, SKF-525-A had no effect. Diethyl maleate (0.6 mL/kg, ip) and cysteine (150 mg/kg, ip), 30 and 5 min before BP, respectively, did not alter the binding of BP from control. Oral methadone treatment, previously shown to increase selectively epoxide hydrase activity in male Wistar rats, also failed to alter the amount of BP bound to hepatic macromolecules. 3-Methylcholanthrene (20 mg/kg per day, ip, for 2 days) administered 24 h before BP, decreased the level of binding from control by 30%. Parallel in vitro studies were carried out with the various agents used in vivo.  相似文献   

11.
Analysis of repetitive scan difference spectra of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxybenzo(a)pyrene, oxygen, and NADPH shows the formation of products with absorbance in the 400–450 nm region. Based on the chromatographic retention time, absorbance, and fluorescence spectra, the two major products of 9-hydroxybenzo(a)pyrene metabolism may be diphenols. The existence of spectral intermediates which resemble phenols rather than quinones during the steady-state metabolism of 3-hydroxybenzo(a)pyrene strongly indicates that either the major product is a diphenol which slowly oxidizes to yield 3,6-quinone and/or that an active quinone reductase exists in liver microsomes.  相似文献   

12.
Among naphthol derivatives tested in the Ames assay, 5,8-dihydroxy-1,4-naphthoquinone or naphthazarin was found to be the most effective inhibitor of benzo(a)pyrene mutagenicity. The inhibitory activity is due in part to the redox cycling of naphthazarin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen, thus diverting electrons from cytochrome P-450 enzymes. Metabolite separations showed a decrease in microsomal metabolism of benzo(a)pyrene and of benzo(a)pyrene-7,8-dihydrodoil upon addition of naphthazarin. Since both NADP and dicoumarol inhibited the naphthazarin-stimulated non-stoichiometric consumption of NADPH and oxygen then naphthazarin redox cycling probably involves both DT-diaphorase and NADPH cytochrome P-450 reductase.  相似文献   

13.
The effect of asbestos on benzo(a)pyrene uptake by microsomal membranes and lipid micelles has been investigated. Asbestos mediates a rapid transport of the carcinogen into the membrane and also impairs benzo(a)pyrene metabolism in rabbit and rat liver microsomes by markedly inhibiting aryl hydrocarbon hydroxylase.  相似文献   

14.
A high-pressure liquid chromatography (HPLC) system is described that separates at least nine benzo(a)pyrene metabolites including an epoxide. The epoxide metabolite has been isolated and characterized as benzo(a)pyrene-4,5-epoxide by comparison of its HPLC retention times, ultraviolet and mass spectral analysis with synthetic benzo(a)pyrene-4,5-epoxide and its conversion by liver microsomes to benzo(a)pyrene-4,5-dihydrodiol.  相似文献   

15.
Liver microsomal enzymes are essential for the detection of benzo[a]pyrene (B[a]P)-mediated mutagenesis in the Salmonella/mammalian microsome mutagenicity test and, furthermore, this mutagenicity is considerably enhanced by induction of hepatic enzymes involved with drug metabolism. Although Aroclor 1254 is most commonly used for induction of S9 enzymes, DDT is also capable of this induction. This paper reports a comparison of liver S9 fraction induced by the two agents: there is a marked difference in their concentration optima for metabolism of B[a]P; greater numbers of revertant colonies are seen with Aroclor-induced S9, which is optimal at a concentration of 10% (v/v), whereas DDT-induced S9 is optimal at 2.5% (v/v); Aroclor induces aryl hydrocarbon hydroxylase (AHH), cytochrome P-450 and epoxide hydrase while DDT induces only AHH, to about half the level detected in the Aroclor-induced S9 fraction. A comparison of metabolite distribution for Aroclor- and DDT-induced hepatic microsomes reveals quantitative differences only. DDT-induced microsomes yield a greater proportion of B[a]P-4,5-oxide and its metabolic product B[a]P-4,5-dihydrodiol than do Aroclor-induced microsomes. Time course studies on the mutagen half-life measured on the agar plate provides good evidence that metabolites responsible for mutagenicity were different for each inducer.  相似文献   

16.
17.
Mechanisms of co-carcinogenicity of particulates, such as iron oxide and asbestos, and benzo[a]pyrene (B[a]P) are not completely understood. Particulates dramatically alter rates of uptake of B[a]P into membranes, a factor which could account for co-carcinogenicity. However, B[a]P must be activated to reactive forms to be carcinogenic and mutagenic so alterations in metabolism of B[a]P by particulates also could result in co-carcinogenesis. To elucidate mechanisms of particulate-B[a]P co-carcinogenesis, we have correlated rates of uptake of B[a]P into microsomes with metabolism of B[a]P and with mutagenicity of B[a]P in the Ames test. In general, aryl hydrocarbon hydroxylase (AHH) activity paralleled rates of uptake of B[a]P, though some inhibition of AHH activity by particulates which was not attributable to availability of B[a]P was evident. This inhibition was studied further by assaying separately mixed function oxidase and epoxide hydrase activities in the presence of particulates. Both chrysotile and iron oxide inhibited O-deethylation of 7-ethoxyresorufin and hydration of B[a]P-4,5-oxide. To determine effects of this inhibition on activation of B[a]P to reactive forms, we studied profiles of metabolites of B[a]P and mutagenicity of B[a]P. The only alteration in profiles of B[a]P metabolites produced by particulates was that due to effects on rates of uptake. Similarly, mutagenicity of B[a]P was positively correlated with rates of uptake into microsomes. We conclude that the predominant effects of chrysotile and iron oxide are in altering rates of uptake of particle-adsorbed B[a]P. Changes in uptake rates then result in alterations of B[a]P metabolism and mutagenicity.  相似文献   

18.
19.
Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96 h to 0.43, 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 and a solvent control, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC–MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86 μg B(a)P L− 1 as compared to the control animals.  相似文献   

20.
The metabolism of benzo(a)pyrene (BP) by rat liver microsomes has been examined in the presence of competitive (styrene oxide), uncompetitive (3,3,3-trichloropropene oxide, TCPO), and noncompetitive (cyclohexene oxide) inhibitors of arene oxide (AO) hydrase. Formation of BP-dihydrodiols was inhibited selectively, with 9,10-dihydrodiol at the lowest inhibitor concentration, and then 7,8- and 4,5-dihydrodiols were decreased at higher inhibitor concentrations. Increased levels of 9-phenol, 7-phenol, and 4,5-oxide appeared selectively in the same order. Appearance of these alternate products did not quantitatively compensate for the loss of dihydrodiols so that there was a net loss of oxidation products. A 1000-fold increase in the concentration of TCPO did not further inhibit BP oxidation. Formation of quinones and 3-phenol was completely unaffected by the inhibitors. The limiting decrease in BP oxidation products was the same for each inhibitor and was greater for 3-methylcholanthrene-induced microsomes (25–30%) than for phenobarbital-induced microsomes (15–20%), which produced a smaller proportion of dihydrodiols. Several mechanisms for this specific loss of oxide-derived reaction products have been considered. BP-oxidation products, particularly 9-phenol, significantly inhibit BP oxidation; however, this inhibition is nonspecific in that 3-phenol, quinones, and oxide-derived products are all decreased. 9-Phenol was far more effective as an inhibitor than as a substrate. Glutathione conjugation of oxides due to cytosolic contamination was excluded by virtue of the near absence of water-soluble products. Reduction of 4,5-oxide occurred, in the absence of oxygen, at a rate which was about half the rate of BP monooxygenation, but this rate decreased 75-fold in the presence of air. Enhanced reduction of BP-oxides in the presence of hydrase inhibitors can explain the action of these inhibitors on BP oxidation if the reduction of microsomally generated 4,5-oxide is several times faster than reduction of added 4,5-oxide. The selective effect of hydrase inhibitors on different dihydrodiols can be attributed to differences in the relative stabilities of the intermediate oxides. The formation of 4,5-dihydrodiol from BP is relatively insensitive to hydrase inhibitors in comparison to the hydration of added 4,5-oxide; this results from the rate-determining monooxygenation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号