共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells 总被引:5,自引:0,他引:5
Tronchère H Laporte J Pendaries C Chaussade C Liaubet L Pirola L Mandel JL Payrastre B 《The Journal of biological chemistry》2004,279(8):7304-7312
MTM1, the gene encoding myotubularin (MTM1), is mutated in the X-linked myotubular myopathy (XLMTM), a severe genetic muscular disorder. MTM1 is a phosphoinositide phosphatase hydrolyzing phosphatidylinositol 3-phosphate (PtdIns(3)P) in yeast and in vitro. Because this lipid is implicated in the regulation of vesicular trafficking, we used established cell lines from XLMTM patients to evaluate whether the lack of endogenous MTM1 expression could affect PtdIns(3)P labeling patterns. Our results showed that the vesicular trafficking related to early endosomes was not significantly affected in the XLMTM cell lines compared with control cells. However, in addition to PtdIns(3)P, we found that MTM1 can hydrolyze phosphatidylinositol 3,5-bisphosphate both in vitro and in mammalian cells. Using a mass assay, we demonstrated that the product generated is phosphatidylinositol 5-phosphate (PtdIns(5)P), a recently discovered phosphoinositide, the function of which is still unknown. In L6 myotubes overexpressing MTM1, hyperosmotic shock induced an increase in the mass level of PtdIns(5)P that was reduced by 50% upon overexpression of the MTM1 inactive mutant D278A. These data demonstrate for the first time a role for MTM1 in the production of PtdIns(5)P in mammalian cells, suggesting that the lack of transformation of phosphatidylinositol 3,5-bisphosphate into PtdIns(5)P might be an important component in the etiology of myotubular myopathy. 相似文献
2.
Insulin stimulates phosphatidylinositol 3-phosphate production via the activation of Rab5 总被引:1,自引:0,他引:1
下载免费PDF全文

Lodhi IJ Bridges D Chiang SH Zhang Y Cheng A Geletka LM Weisman LS Saltiel AR 《Molecular biology of the cell》2008,19(7):2718-2728
Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain-containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles. 相似文献
3.
K K Caldwell D L Lips V S Bansal P W Majerus 《The Journal of biological chemistry》1991,266(27):18378-18386
Inositol-polyphosphate 3-phosphatase catalyzes the hydrolysis of the 3-position phosphate bond of inositol 1,3-bisphosphate (Ins(1,3)P2) to form inositol 1-monophosphate and inorganic phosphate (Bansal, V.S., Inhorn, R.C., and Majerus, P.W. (1987) J. Biol. Chem. 262, 9444-9447). Phosphatidylinositol 3-phosphatase catalyzes the analogous reaction utilizing phosphatidylinositol 3-phosphate (PtdIns(3)P) as substrate to form phosphatidylinositol and inorganic phosphate (Lips, D.L., and Majerus, P.W. (1989) J. Biol. Chem. 264, 19911-19915). We now demonstrate that these enzyme activities are identical. Two forms of the enzyme, designated Type I and II 3-phosphatases, were isolated from rat brain. The Type I 3-phosphatase consisted of a protein doublet that migrated at a relative Mr of 65,000 upon sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The Mr of this isoform upon size-exclusion chromatography was 110,000, suggesting that the native enzyme is a dimer. The Type II enzyme consisted of equal amounts of an Mr = 65,000 doublet and an Mr = 78,000 band upon SDS-polyacrylamide gel electrophoresis. This isoform displayed an Mr upon size-exclusion chromatography of 147,000, indicating that it is a heterodimer. The Type II 3-phosphatase catalyzed the hydrolysis of Ins(1,3)P2 with a catalytic efficiency of one-nineteenth of that measured for the Type I enzyme, whereas PtdIns(3)P was hydrolyzed by the Type II 3-phosphatase at three times the rate measured for the Type I 3-phosphatase. The Mr = 65,000 subunits of the two forms of 3-phosphatase appear to be the same based on co-migration on SDS-polyacrylamide gels and peptide maps generated with Staphylococcus aureus protease V8 and trypsin. The peptide map of the Mr = 78,000 subunit was different from that of the Mr = 65,000 subunits. Thus, we propose that the differing relative specificities of the Type I and II 3-phosphatases for Ins(1,3)P2 and PtdIns(3)P are due to the presence of the Mr = 78,000 subunit of the Type II enzyme. 相似文献
4.
5.
Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate 总被引:1,自引:0,他引:1
Phosphoinositide signaling pathways regulate numerous processes in eukaryotic cells, including migration, proliferation, and survival. The regulatory lipid phosphatidylinositol 4,5-bisphosphate is synthesized by two distinct classes of phosphatidylinositol phosphate kinases (PIPKs), the type I and II PIPKs. Although numerous physiological functions have been identified for type I PIPKs, little is known about the functions and regulation of type II PIPK. Using a yeast two-hybrid screen, we identified an interaction between the type IIbeta PIPK isoform (PIPKIIbeta) and SPOP (speckle-type POZ domain protein), a nuclear speckle-associated protein that recruits substrates to Cul3-based ubiquitin ligases. PIPKIIbeta and SPOP interact and co-localize at nuclear speckles in mammalian cells, and SPOP mediates the ubiquitylation of PIPKIIbeta by Cul3-based ubiquitin ligases. Additionally, stimulation of the p38 MAPK pathway enhances the ubiquitin ligase activity of Cul3-SPOP toward multiple substrate proteins. Finally, a kinase-dead PIPKIIbeta mutant enhanced ubiquitylation of Cul3-SPOP substrates. The kinase-dead PIPKIIbeta mutant increases the cellular content of its substrate lipid phosphatidylinositol 5-phosphate (PI5P), suggesting that PI5P may stimulate Cul3-SPOP activity through a p38-dependent signaling pathway. Expression of phosphatidylinositol-4,5-bisphosphate 4-phosphatases that generate PI5P dramatically stimulated Cul3-SPOP activity and was blocked by the p38 inhibitor SB203580. Taken together, these data define a novel mechanism whereby the phosphoinositide PI5P leads to stimulation of Cul3-SPOP ubiquitin ligase activity and also implicate PIPKIIbeta as a key regulator of this signaling pathway through its association with the Cul3-SPOP complex. 相似文献
6.
Gouvea IE Judice WA Cezari MH Juliano MA Juhász T Szeltner Z Polgár L Juliano L 《Biochemistry》2006,45(39):12083-12089
Picornaviruses produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornain-2A and -3C. Picornain-3C has characteristics of both the serine peptidase chymotrypsin and the cysteine peptidase papain in that the 3D structure resembles chymotrypsin, but its nucleophile is a cysteine SH rather than a serine OH group. We investigated the specificity of poliovirus picornain-3C (PV3C) protease and the influence of kosmotropic salts on catalytic activity, using FRET peptides related to a cleavable segment of the virus polyprotein. The peptidase activity of PV3C was found to be 100-fold higher in the presence of 1.5 M sodium citrate. This activation was anion-dependent, following the Hofmeister series citrate(3-) > SO4(2-) > HPO4(2-) > acetate- > HCO3(-) > Cl-. The activation appeared to be independent of substrate sequence and arose primarily from an increase in kcat. A shift to higher pH was also observed for the pK1 of the enzyme pH-activity profile. Experiments with the fluorescent probe ANS (1-anilino-8-naphthalene sulfonate) showed that the protease bound the dye in the presence of 1 M sodium citrate but not in its absence or in the presence of 1 M NaCl. Structural changes in PV3C protease were detected using circular dichroism and the thermodynamic data indicated a more organized active site in the presence of sodium citrate. PV3C protease was also activated in D2O, which was added to the activation by citrate. These effects seem to be related to nonspecific interactions between the solvent and the protein. Our data show that the catalytic efficiency of PV3C protease is modulated by the composition of the environment and that this modulation may play a role in the optimal processing of polyprotein for the virus assembly that occurs inside specific vesicles formed in poliovirus-infected cells. 相似文献
7.
Phosphatidylinositol-4-phosphate kinase from rat brain. Activation by polyamines and inhibition by phosphatidylinositol 4,5-bisphosphate 总被引:4,自引:0,他引:4
Phosphatidylinositol-4-phosphate (PtdIns-P) kinase was purified approximately 30-fold from rat brain cytosol. No contaminating activity of PtdIns kinase or of phosphomonoesterase and phospholipase C using PtdIns-P or PtdIns-P2 as substrate could be detected in the enzyme preparation. The PtdIns-P kinase activity was severalfold higher when PtdIns-P/PtdEtn vesicles rather than PtdIns-P alone were used as substrate. This might be due to increased accessibility of the enzyme for the vesicular substrate, further indicated by the lower activity obtained when PtdCho or PtdIns, phospholipids with bulky head groups, was also present in the vesicles. The product PtdIns-P2 was a competitive inhibitor with respect to PtdIns-P and 50% inhibition of enzyme activity was observed at the same product concentration regardless of whether the substrate-product mixture was presented in vesicular or micellar form, or the substrate and product were added in separate vesicles. The polyamines spermine and spermidine enhanced PtdIns-P kinase activity severalfold. Spermine also caused a shift in the MgCl2 saturation curve from sigmoidal to hyperbolic, lowering the Mg2+ concentration required for optimum kinase activity to the physiological range. Myelin basic protein enhanced the enzyme activity when PtdIns-P/PtdEtn vesicles were used as substrate, whereas it was inhibitory when PtdIns-P was added alone. The possible role of polyamines and the product PtdIns-P2 in the regulation of PtdIns-P kinase activity is discussed. 相似文献
8.
Phosphatidylinositol 3-kinases (PI 3-kinases) regulate cellular functions through the 3'-phosphorylation of phosphatidylinositol (PI) and its derivatives. The PI 3-kinase product phosphatidylinositol 3-phosphate [PI(3)P] functions to recruit and activate effector proteins containing FYVE zinc finger domains. These proteins have various functions in endocytic membrane trafficking, cytoskeletal regulation and signal transduction. In order to understand the function of FYVE proteins, it is essential to study the formation, localisation, trafficking and turnover of PI(3)P. Here we review recent evidence that PI(3)P is formed on early endosomes through the activity of a PI 3-kinase which is recruited by the GTPase Rab5, and that the PI(3)P is subsequently internalised into intralumenal vesicles of multivesicular endosomes for turnover. 相似文献
9.
10.
Regulation of autophagy by phosphatidylinositol 3-phosphate 总被引:2,自引:0,他引:2
Chloe Burman 《FEBS letters》2010,584(7):1302-1310
The simple phosphoinositide phosphatidylinositol 3-phosphate (PI(3)P) has been known to have important functions in endocytic and phagocytic traffic, and to be required for the autophagic pathway. In all of these settings, PI(3)P appears to create platforms that serve to recruit specific effectors for membrane trafficking events. In autophagy, PI(3)P may form the platform for autophagosome biogenesis. 相似文献
11.
Gaullier JM Ronning E Gillooly DJ Stenmark H 《The Journal of biological chemistry》2000,275(32):24595-24600
FYVE zinc finger domains, which are conserved in multiple proteins from yeast to man, interact specifically with the membrane lipid phosphatidylinositol 3-phosphate (PtdIns(3)P). Here we have investigated the structural requirements for the interaction of the FYVE finger of the early endosome antigen EEA1 with PtdIns(3)P and early endosomes. The binding of the FYVE finger to PtdIns(3)P is Zn(2+)-dependent, and Zn(2+) could not be replaced by any other bivalent cations tested. By surface plasmon resonance, the wild-type FYVE finger was found to bind to PtdIns(3)P with an apparent K(D) of about 50 nm and a 1:1 stoichiometry. Mutagenesis of cysteines involved in Zn(2+) coordination, basic residues thought to be directly involved in ligand binding and other conserved residues, resulted in a 6- to >100-fold decreased affinity for PtdIns(3)P. A mutation in the putative PtdIns(3)P-binding pocket, R1375A, may prove particularly informative, because it led to a strongly decreased affinity for PtdIns(3)P without affecting the FYVE three-dimensional structure, as measured by fluorescence spectroscopy. Whereas the C terminus of EEA1 localizes to early endosomes when expressed in mammalian cells, all the FYVE mutants with reduced affinity for PtdIns(3)P were found to be largely cytosolic. Furthermore, whereas expression of the wild-type EEA1 C terminus interferes with early endosome morphology, the point mutants were without detectable effect. These results support recently proposed models for the ligand binding of the FYVE domain and indicate that PtdIns(3)P binding is crucial for the localization and function of EEA1. 相似文献
12.
13.
Guanosine 5'-triphosphate, 3'-diphosphate 5'-phosphohydrolase. Purification and substrate specificity 总被引:4,自引:0,他引:4
The regulatory nucleotide guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and its precursor guanosine 5'-triphosphate, 3'-diphosphate (pppGpp) are accumulated during stringent response in bacterial cells. The enzyme pppGpp-5'-phosphohydrolase, which catalyzes the conversion of pppGpp to ppGpp, was partially purified from Escherichia coli. It has Mr = 140,000 and an apparent Km of 0.11 mM for pppGpp. It requires Mg2+ and a monovalent cation. NH4+ is preferred over K+, while Na+ is inactive. The enzyme does not hydrolyze GTP, ATP, pppApp, or ppGpp. It is also not effectively inhibited by these nucleotides. pppGpp-5'-phosphohydrolase hydrolyzes the 3'-monophosphate analog pppGp equally well (apparent Km of 0.13 mM), yielding the recently identified MS III nucleotide (ppGp). pppGpp-5'-phosphohydrolase does not have RNA 5'-terminal gamma-phosphatase activity; however, 5'-terminal phosphates are released by pppGpp-5'-phosphohydrolase when the GTP-terminated RNA chains are first converted into oligonucleotides by RNase A treatment. pppGpp-5'-phosphohydrolase was found to actively hydrolyze the dinucleotide fragment pppGpNp but exhibited very low activity toward longer chain fragments. The 3'-unphosphorylated dinucleotide pppGpN was, however, not hydrolyzed. The ability of pppGpp-5'-phosphohydrolase to hydrolyze pppGpp, pppGp, and pppGpNp, but not pppG and pppGpN, indicates that pppGpp-5'-phosphohydrolase is rather nonspecific toward the 3'-OH substitutions of the substrates although a free, unsubstituted phosphate group at the 3'-OH position is essential. 相似文献
14.
Yamashita A Nakanishi H Suzuki H Kamata R Tanaka K Waku K Sugiura T 《Biochimica et biophysica acta》2007,1771(9):1202-1215
1-acyl-sn-glycero-3-phosphate (AGP) acyltransferases (AGPAT) are involved in de novo biosynthesis of glycerolipids, such as phospholipids and triacylglycerol. Alignment of amino acid sequences from AGPAT, sn-glycerol-3-phosphate acyltransferase, and dihydroxyacetonephosphate acyltransferase reveals four regions with strong homology (acyltransferase motifs I-IV). The invariant amino acids within these regions may be part of a catalytically important site in this group of acyl-CoA acyltransferases. However, in human AGPAT1 a transmembrane domain is predicted to separate motif I on the cytosolic side from motifs II-III on the lumenal side, with motif IV near surface of the membrane. The topology of motifs I and III was confirmed by experiments with recombinant AGPAT1 containing potential glycosylation site near the motifs. This topology conflicts with the expectation that catalytically important sites are near one another, raising questions of whether the acyltransferase motifs really are important for AGPAT catalysis, and how substrates access motifs II-III on the lumenal side of the endoplasmic reticulum membrane. Using human AGPAT1 as a model, we have examined the catalytic roles of highly conserved residues in the four acyltransferase motifs by site-directed mutagenesis. Modifications of the sidechain structures of His104, Asp109, Phe146, Arg149, Glu178, Gly179, Thr180, Arg181 and Ile208 all affected AGPAT1 activity, indicating that the acyltransferase motifs indeed are important for AGPAT catalysis. In addition, we examined substrate accessibility to the catalytic domain of human AGPAT1 using a competition assay. Lysophosphatidic acid (LPA) with fatty acid chains shorter than 10 carbons did not access the catalytic domain, suggesting that LPA hydrophobicity is important. In contrast, short chain acyl-CoAs did access the catalytic domain but did not serve as the second substrate. These results suggest that motifs II and III are involved in LPA binding and motifs I and IV are involved in acyl-CoA binding. 相似文献
15.
Shamshad Cockcroft 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(9):905-912
Phosphatidic acid (PA) production by receptor-stimulated phospholipase D is believed to play an important role in the regulation of cell function. The second messenger function of PA remains to be elucidated. PA can bind and affect the activities of different enzymes and here we summarise the current status of activation of Type I phosphatidylinositol 4-phosphate 5-kinase by PA. Type 1 phosphatidylinositol 4-phosphate 5-kinase is also regulated by ARF proteins as is phospholipase D and we discuss the contributions of ARF and PA towards phosphatidylinositol(4,5)bisphosphate synthesis at the plasma membrane. 相似文献
16.
《Autophagy》2013,9(12):1851-1852
The key autophagic lipid sensors are Atg18 in yeast and the WIPI proteins in mammals. Atg18 and the WIPIs belong to the PROPPIN family of proteins. PROPPINs are seven- bladed β-propellers that bind to phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2]. In order to understand how PROPPINs bind phosphoinositides, we have determined the crystal structure of a representative, biochemically tractable PROPPIN, Hsv2 of Kluveromyces lactis. The structure revealed that PROPPINs contain two phosphoinositide binding sites which cooperate with a hydrophobic anchoring loop in membrane binding. These three binding elements cooperate in function, as demonstrated by the incremental loss of function in Atg18 mutants impaired in combinations of the two phosphoinositide binding sites and the hydrophobic loop. 相似文献
17.
Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site 总被引:11,自引:0,他引:11
S R Padgette D B Re C S Gasser D A Eichholtz R B Frazier C M Hironaka E B Levine D M Shah R T Fraley G M Kishore 《The Journal of biological chemistry》1991,266(33):22364-22369
The active site of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) has been probed using site-directed mutagenesis and inhibitor binding techniques. Replacement of a specific glycyl with an alanyl or a prolyl with a seryl residue in a highly conserved region confers glyphosate tolerance to several bacterial and plant EPSPS enzymes, suggesting a high degree of structural conservation between these enzymes. The glycine to alanine substitution corresponding to Escherichia coli EPSPS G96A increases the Ki(app) (glyphosate) of petunia EPSPS 5000-fold while increasing the Km(app)(phosphoenolpyruvate) about 40-fold. Substitution of this glycine with serine, however, abolishes EPSPS activity but results in the elicitation of a novel EPSP hydrolase activity whereby EPSP is converted to shikimate 3-phosphate and pyruvate. This highly conserved region is critical for the interaction of the phosphate moiety of phosphoenolpyruvate with EPSPS. 相似文献
18.
3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes. 相似文献
19.
20.
Gillooly DJ Morrow IC Lindsay M Gould R Bryant NJ Gaullier JM Parton RG Stenmark H 《The EMBO journal》2000,19(17):4577-4588
Phosphatidylinositol 3-kinase (PI3K) regulates several vital cellular processes, including signal transduction and membrane trafficking. In order to study the intracellular localization of the PI3K product, phosphatidylinositol 3-phosphate [PI(3)P], we constructed a probe consisting of two PI(3)P-binding FYVE domains. The probe was found to bind specifically, and with high affinity, to PI(3)P both in vitro and in vivo. When expressed in fibroblasts, a tagged probe localized to endosomes, as detected by fluorescence microscopy. Electron microscopy of untransfected fibroblasts showed that PI(3)P is highly enriched on early endosomes and in the internal vesicles of multivesicular endosomes. While yeast cells deficient in PI3K activity (vps15 and vps34 mutants) were not labelled, PI(3)P was found on intralumenal vesicles of endosomes and vacuoles of wild-type yeast. vps27Delta yeast cells, which have impaired endosome to vacuole trafficking, showed a decreased vacuolar labelling and increased endosome labelling. Thus PI(3)P follows a conserved intralumenal degradation pathway, and its generation, accessibility and turnover are likely to play a crucial role in defining the early endosome and the subsequent steps leading to multivesicular endosome formation. 相似文献