首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial xylanases and their industrial applications: a review   总被引:54,自引:0,他引:54  
Despite an increased knowledge of microbial xylanolytic systems in the past few years, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by microorganisms and their enzymes. The enzyme system used by microbes for the metabolism of xylan is the most important tool for investigating the use of the second most abundant polysaccharide (xylan) in nature. Recent studies on microbial xylanolytic systems have generally focussed on induction of enzyme production under different conditions, purification, characterization, molecular cloning and expression, and use of enzyme predominantly for pulp bleaching. Rationale approaches to achieve these goals require a detailed knowledge of the regulatory mechanism governing enzyme production. This review will focus on complex xylan structure and the microbial enzyme complex involved in its complete breakdown, studies on xylanase regulation and production and their potential industrial applications, with special reference to biobleaching.  相似文献   

2.
Bacterial alkaline proteases: molecular approaches and industrial applications   总被引:29,自引:5,他引:29  
Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN' and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.  相似文献   

3.
Enzymatic depolymerization of hemicellulose to monomer sugars needs the synergistic action of multiple enzymes, among them endo-xylanases (EC 3.2.1.8) and β-xylosidases (EC 3.2.1.37) (collectively xylanases) play a vital role in depolymerizing xylan, the major component of hemicellulose. Recent developments in recombinant protein engineering have paved the way for engineering and expressing xylanases in both heterologous and homologous hosts. Functional expression of endo-xylanases has been successful in many hosts including bacteria, yeasts, fungi and plants with yeasts being the most promising expression systems. Functional expression of β-xylosidases is more challenging possibly due to their more complicated structures. The structures of endo-xylanases of glycoside hydrolase families 10 and 11 have been well elucidated. Family F/10 endo-xylanases are composed of a cellulose-binding domain and a catalytic domain connected by a linker peptide with a (β/α)(8) fold TIM barrel. Family G/11 endo-xylanases have a β-jelly roll structure and are thought to be able to pass through the pores of hemicellulose network owing to their smaller molecular sizes. The structure of a β-d-xylosidase belonging to family 39 glycoside hydrolase has been elucidated as a tetramer with each monomer being composed of three distinct regions: a catalytic domain of the canonical (β/α)(8) - TIM barrel fold, a β-sandwich domain and a small α-helical domain with the enzyme active site that binds to d-xylooligomers being present on the upper side of the barrel. Glycosylation is generally considered as one of the most important post-translational modifications of xylanases, but a few examples showed functional expression of eukaryotic xylanases in bacteria. The optimal ratio of these synergistic enzymes is very important in improving hydrolysis efficiency and reducing enzyme dosage but has hardly been addressed in literature. Xylanases have been used in traditional fields such as food, feed and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications.  相似文献   

4.
Massive production of keratinaceous byproducts in the form of agricultural and industrial wastes throughout the world necessitates its justified utilization. Chemical treatment of keratin waste is proclaimed as an eco-destructive approach by various researchers since it generates secondary pollutants. Microbial degradation of keratin waste is an emerging and eco-friendly approach and offers dual benefits, i.e., treatment of recalcitrant pollutant (keratin) and procurement of a commercially important enzyme (keratinase). This review summarizes the potential utility of some bacterial and fungal species for the production of keratinase using a variety of keratinaceous wastes as growth substrates. The application of microbial keratinases in waste management; animal feed, detergent, and fertilizer manufacturing; and leather, cosmetic, and pharmaceutical industries is also abridged in this review.  相似文献   

5.
6.
Phospholipases and their industrial applications   总被引:1,自引:0,他引:1  
Phospholipids are present in all living organisms. They are a major component of all biological membranes, along with glycolipids and cholesterol. Enzymes aimed at modifying phospholipids, namely, phospholipases, are consequently widespread in nature, playing very diverse roles from aggression in snake venom to signal transduction and digestion in humans. In this review, we give a general overview of phospholipases A1, A2, C and D from a sequence and structural perspective and their industrial application. The use of phospholipases in industrial processes has grown hand-in-hand with our ability to clone and express the genes in microbial hosts with commercially attractive amounts. Further, the use in industrial processes is increasing by optimizing the enzymes by protein engineering. Here, we give a perspective on the work done to date to express phospholipases in heterologous hosts and the efforts to optimize them by protein engineering. We will draw attention to the industrial processes where phospholipases play a key role and show how the use of a phospholipase for oil degumming leads to substantial environmental benefits. This illustrates a very general trend: the use of enzymes as an alternative to chemical processes to make products often provides a cleaner solution for the industrial processes. In a world with great demands on non-polluting, energy saving technical solutions—white biotechnology is a strong alternative. An erratum to this article can be found at  相似文献   

7.
极端酶及其工业应用   总被引:21,自引:0,他引:21  
无论是从极端环境中筛选天然极端酶,还是由蛋白质工程构建的突变酶,或者是交联酶晶体,都可以提高酶夺环境的抵卸能力及其稳定性,从而使酶在工业上的应用有了突破性的进展。  相似文献   

8.
Laccase-mediator systems and their applications: a review   总被引:1,自引:0,他引:1  
The mechanism of operation of laccase-mediator systems (LMSs) in xenobiotic degradation mediated by "true" redox mediators and laccase enhancing agents is considered. Structural formulae of most common laccase mediators and compounds that can be used as agents enhancing the enzyme operation are presented. Examples of LMS application in biotechnology are described.  相似文献   

9.
The microbial polysaccharides reviewed include xanthan gum, scleroglucan, PS-10, PS-21 and PS-53 gums, polysaccharides from Alcaligenes sp., PS-7 gum, gellan gum, curdlan, bacterial alginate, dextran, pullulan, Baker's Yeast Glycan, 6-deoxy-hexose-containing polysaccharides and bacterial cellulose. Factors limiting the commercial potential of certain microbial polysaccharides such as availability, rheological properties, and polyvalency are outlined. The polysaccharides are classified according to their uses as viscosity-increasing agents and as gelling agents. A third category includes polysaccharides with specific applications such as tailor-made dextran and pullulan and polysaccharides used as substrates for the preparation of rare sugars. The difficulties encountered in development of a polysaccharide at the industrial level are pointed out.  相似文献   

10.
Applications of pectinases in the commercial sector: a review   总被引:38,自引:0,他引:38  
Pectinases are one of the upcoming enzymes of fruit and textile industries. These enzymes break down complex polysaccharides of plant tissues into simpler molecules like galacturonic acids. The role of acidic pectinases in bringing down the cloudiness and bitterness of fruit juices is well established. Recently, there has been a good number of reports on the application of alkaline pectinases in the textile industry for the retting and degumming of fiber crops, production of good quality paper, fermentation of coffee and tea, oil extractions and treatment of pectic waste water. This review discusses various types of pectinases and their applications in the commercial sector.  相似文献   

11.
Enzymes have applications in many fields, including organic synthesis, clinical analysis, pharmaceuticals, detergents, food production and fermentation. The application of enzymes to organic synthesis is currently attracting more and more attention. The discovery of new microbial enzymes through extensive and persistent screening will open new, simple routes for synthetic processes and, consequently, new ways to solve environmental problems.  相似文献   

12.
组学分析技术的发展推动生物学逐渐成为一门以数据分析为中心的科学。依托生物数据在细胞整体系统水平建立数字细胞模型,对于理解细胞系统组织原理和生命产生进化规律,预测各种环境和基因扰动对细胞功能的影响并指导设计人工生命具有重要意义,因此数字细胞的构建模拟设计已成为合成生物学的核心研究内容与底层支撑技术。本文重点对天津工业生物技术研究所创立十年来在数字细胞研究方面的进展进行回顾介绍,重点包括基因组尺度代谢网络模型的构建、质控以及其在途径设计和指导菌种代谢工程改造方面的应用,进一步结合近年来细胞模型研究的前沿趋势,对整合多种约束的模型的构建和分析研究方面的最新成果进行了介绍,最后对数字细胞研究的未来发展方向进行展望。数字细胞技术将与基因组测序、合成和编辑等合成生物学前沿技术一起提升人们对生命进行读写改创的能力。  相似文献   

13.
倪秀梅  杨涛  方芳 《微生物学通报》2021,48(11):4398-4411
生物胺是存在于发酵食品和酒精饮料中的潜在胺类危害物。如果人体摄入过量的生物胺,则会引起呼吸困难、呕吐和发烧等过敏反应。生物胺降解酶是通过将生物胺氧化成醛类物质来实现降解生物胺的一类酶。目前发现的具有降解生物胺能力的酶主要包括胺氧化酶、胺脱氢酶和多铜氧化酶。本文详细阐述了这3类主要生物胺降解酶的催化机理、底物特异性、酶学性质、应用特性和它们对生物胺的降解效果,归纳和总结了生物胺降解酶的异源表达和分子改造的研究进展,并对生物胺降解酶在基因挖掘、分子改造和表达等方面的研究趋势进行了展望,以期为研究和开发食品中生物胺的酶法降解策略提供参考。  相似文献   

14.
Microbial keratinases and their prospective applications: an overview   总被引:1,自引:0,他引:1  
Microbial keratinases have become biotechnologically important since they target the hydrolysis of highly rigid, strongly cross-linked structural polypeptide “keratin” recalcitrant to the commonly known proteolytic enzymes trypsin, pepsin and papain. These enzymes are largely produced in the presence of keratinous substrates in the form of hair, feather, wool, nail, horn etc. during their degradation. The complex mechanism of keratinolysis involves cooperative action of sulfitolytic and proteolytic systems. Keratinases are robust enzymes with a wide temperature and pH activity range and are largely serine or metallo proteases. Sequence homologies of keratinases indicate their relatedness to subtilisin family of serine proteases. They stand out among proteases since they attack the keratin residues and hence find application in developing cost-effective feather by-products for feed and fertilizers. Their application can also be extended to detergent and leather industries where they serve as specialty enzymes. Besides, they also find application in wool and silk cleaning; in the leather industry, better dehairing potential of these enzymes has led to the development of greener hair-saving dehairing technology and personal care products. Further, their prospective application in the challenging field of prion degradation would revolutionize the protease world in the near future.  相似文献   

15.
Journal of Industrial Microbiology & Biotechnology - 2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas....  相似文献   

16.
Pigments are an essential part of life on earth, ranging from microbes to plants and humans. The physiological and environmental cues induce microbes to produce a broad spectrum of pigments, giving them adaptation and survival advantages. Microbial pigments are of great interest due to their natural origin, diverse biological activities, and wide applications in the foods, Pharmaceuticals, cosmetics, and textile industries. Despite noticeable research on pigment-producing microbes, commercial successes are scarce, primarily from higher, remote, and inaccessible Himalayan niches. Therefore, substantial bioprospection integrated with advanced biotechnological strategies is required to commercialize microbial pigments successfully. The current review elaborates on pigment-producing microbes from a Himalayan perspective, offering tremendous opportunities for industrial applications. Additionally, it illustrates the ecological significance of microbial pigments and emphasizes the current status and prospects of microbial pigment production above the test tube scale.  相似文献   

17.
Laccase-mediator systems and their applications: A review   总被引:1,自引:0,他引:1  
The mechanism of operation of laccase-mediator systems (LMSs) in xenobiotic degradation mediated by “true” redox mediators and laccase enhancing agents is considered. Structural formulae of most common laccase mediators and compounds that can be used as agents enhancing the enzyme operation are presented. Examples of LMS application in biotechnology are described.  相似文献   

18.
Cellulose degrading enzymes and their potential industrial applications   总被引:41,自引:0,他引:41  
Bioconversion of cellulose to soluble sugars and glucose is catalyzed by a group of enzymes called cellulases. Microorganisms including fungi, bacteria and actinomycetes produce mainly three types of cellulase components—endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and β-glucosidase—either separately or in the form of a complex. Over the last several decades, cellulases have become better understood at a fundamental level; nevertheless, much remains to be learnt. The tremendous commercial potential of cellulases in a variety of applications remains the driving force for research in this area. This review summarizes the present state of knowledge on microbial cellulases and their applications.  相似文献   

19.
Bacteria and other fungi are industrially cultivated in a variety of ways for the commercial production of some 25 enzymes utilized in many industries ranging from the conversion of starch to fermentable sugars, through chill-proofing of beer to bating of hides.  相似文献   

20.
Microbial alkaline proteases: from a bioindustrial viewpoint   总被引:30,自引:0,他引:30  
Alkaline proteases are of considerable interest in view of their activity and stability at alkaline pH. This review describes the proteases that can resist extreme alkaline environments produced by a wide range of alkalophilic microorganisms. Different isolation methods are discussed which enable the screening and selection of promising organisms for industrial production. Further, strain improvement using mutagenesis and/or recombinant DNA technology can be applied to augment the efficiency of the producer strain to a commercial status. The various nutritional and environmental parameters affecting the production of alkaline proteases are delineated. The purification and properties of these proteases is discussed, and the use of alkaline proteases in diverse industrial applications is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号