首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

2.
3.
A cDNA clone encoding the photosystem I subunit, PSI-G was isolated from barley using an oligonucleotide specifying a partial amino acid sequence from a 9 kDa polypeptide of barley photosystem I. The 724 bp sequence contains an open reading frame encoding a precursor polypeptide of 15 107 kDa. Import studies using the in vitro expressed barley PsaG cDNA clone demonstrate that PSI-G migrates with an apparent molecular mass of 9 kDa on SDS-polyacrylamide gels together with PSI-C (subunit-VII). The previous assignment of the gene product of PsaG from spinach as subunit V (Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thümmler F, Lottspeich F, Herrmann RG, FEBS Lett 237: 218–224, 1988) needs to be re-examined. The expression of the psaG gene is light-induced similar to other barley photosystem I genes. A significant sequence similarity to PSI-K from Chlamydomonas reinhardtii was discovered when a gene database was searched with the barley PSI-G amino acid sequence. Extensive sequence similarity between the nuclear-encoded photosystem I subunits has not previously been found. The observed sequence similarity between PSI-G and PSI-K suggests a symmetric location of these subunits in the photosystem I complex. The hydropathy plot of the barley PSI-G polypeptide indicates two membrane-spanning regions which are also found at the corresponding locations in the PSI-K polypeptide. PSI-G and PSI-K probably have evolved from a gene duplication of an ancestral gene.  相似文献   

4.
A pea leaf cDNA library constructed in lambda gt11 was screened with an antibody raised to the P subunit of glycine decarboxylase. One of the positive clones isolated was sequenced and shown to contain an open reading frame, which encoded the entire P subunit polypeptide. Aligning the deduced amino acid sequence with the amino acid sequence determined directly from the NH2 terminus of the mature P subunit shows the presence of a putative 86 amino acid leader sequence, presumably required for import into the mitochondria, and gives a Mr of the mature protein of 105,000. Comparison of this deduced amino acid sequence with the sequence of a pyridoxal phosphate-containing peptide isolated from the P subunit of chicken liver glycine decarboxylase shows remarkable conservation. The P subunit, however, shows little sequence homology with other published amino acid decarboxylases. Expression of the P subunit mRNA shows a pattern very similar to that of the corresponding polypeptide: it is strongly light induced and is expressed at a much higher level in leaves than in other tissues. Southern blot analysis suggests that the P subunit is encoded by a small multigene family.  相似文献   

5.
6.
7.
The complete nucleotide sequence of the petH gene encoding ferredoxin-NADP+ reductase from the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7119 has been determined. The encoded polypeptide is 136 amino acids longer than the enzyme obtained after purification to homogeneity. The extended N-terminal domain consists of 80 amino acids which shows homology to the CpcD phycobilisome linker polypeptide, through which FNR might be anchored to the thylakoid-bound phycobilisomes. A 56 amino acid interdomain fragment is found which could be a target for proteolysis.  相似文献   

8.
The sequence of a 2782 bp fragment of the chloroplast genome of Chlorella ellipsoidea has been determined. The region includes the entire gene (rbcL) for the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase/oxygenase and a sequence (rpoC-like) similar to part of the gene for the subunit of E. coli RNA polymerase which is oriented in same direction as rbcL. The arrangement is rpoC-like — 446 bp — rbcL. The rbcL gene codes for a polypeptide of 475 amino acids whose sequence shows 88% homology with those of tobacco and spinach, 94% homology with that of Chlamydomonas, and 85% homology with that of Anacystis. The putative rbcL promoter sequence has homology with E. coli promoter sequences and its putative terminator sequence is capable of forming a stem-and-loop structure.  相似文献   

9.
Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria   总被引:22,自引:2,他引:20       下载免费PDF全文
The ATPase subunit 6, located in the inner mitochondrial membrane, is encoded by mitochondrial genomes in animals and fungi. We have isolated and characterized a mitochondrial gene, designated atp 6, that encodes the subunit 6 polypeptide of Zea mays. Nucleotide and predicted amino acid sequence comparisons have revealed a homology of 44.6 and 33.2% with the yeast ATPase subunit 6 gene and polypeptide, respectively. The predicted protein in maize contains 291 amino acids with a molecular weight of 31,721. Hydropathy profiles generated for the maize and yeast polypeptides are very similar and contain large hydrophobic domains, characteristic of membrane bound proteins. RNA transfer blot analysis indicates that atp 6 is actively transcribed. Interestingly, 122 base pairs of nucleotide sequence interior to atp 6 have extensive homology with the 5′ end of the cytochrome oxidase subunit II gene of maize mitochondria, suggesting recombination between the two genes.  相似文献   

10.
Summary The nucleotide sequence of the Azotobacter vinelandii ntrA gene has been determined. It encodes a 56916 Dalton acidic polypeptide (AvNtrA) with substantial homology to NtrA from Klebsiella pneumoniae (KpNtrA) and Rhizobium meliloti (RmNtrA). NtrA has been shown to act as a novel RNA polymerase sigma factor but the predicted sequence of AvNtrA substantiates our previous analysis of KpNtrA in showing no substantial homology to other known sigma factors. Alignment of the predicted amino acid sequences of AvNtrA, KpNtrA and RmNtrA identified three regions; two showing>50% homology and an intervening sequence of <10% homology. The predicted protein contains a short sequence near the centre with homology to a conserved region in other sigma factors. The C-terminal region contains a region of homology to the subunit of RNA polymerase (RpoC) and two highly conserved regions one of which is significantly homologous to known DNA-binding motifs. In A. vinelandii, ntrA is followed by another open reading frame (ORF) which is highly homologous to a comparable ORF downstream of ntrA in K. pneumoniae and R. meliloti.  相似文献   

11.
The purification and the amino acid sequence of a proteolipid translated on ribosomes in yeast mitochondria is reported. This protein, which is a subunit of the ATP synthase, was purified by extraction with chloroform/methanol (2/1) and subsequent chromatography on phosphocellulose and reverse phase h.p.l.c. A mol. wt. of 5500 was estimated by chromatography on Bio-Gel P-30 in 80% formic acid. The complete amino acid sequence of this protein was determined by automated solid phase Edman degradation of the whole protein and of fragments obtained after cleavage with cyanogen bromide. The sequence analysis indicates a length of 48 amino acid residues. The calculated mol. wt. of 5870 corresponds to the value found by gel chromatography. This polypeptide contains three basic residues and no negatively charged side chain. The three basic residues are clustered at the C terminus. The primary structure of this protein is in full agreement with the predicted amino acid sequence of the putative polypeptide encoded by the mitochondrial aap1 gene recently discovered in Saccharomyces cerevisiae. Moreover, this protein shows 50% homology with the amino acid sequence of a putative polypeptide encoded by an unidentified reading frame also discovered near the mitochondrial ATPase subunit 6 gene in Aspergillus nidulans.  相似文献   

12.
Summary We determined the nucleotide sequence of gene 1 of Klebsiella phage K11, which is a member of the T7 group of phages. The largest open reading frame corresponds to a polypeptide with 906 amino acids and a molecular weight of 100383 daltons. The deduced amino acid sequence of this polypeptide shows 71% homology to the T7 RNA polymerase (the product of T7 gene 1), 72% homology to the T3 RNA polymerase and 27% homology to the SP6 RNA polymerase. Divergent evolution was clearly most pronounced in the amino-terminal portion.  相似文献   

13.
14.
15.
16.
17.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   

18.
A cDNA encoding mitochondrial cytochrome c oxidase subunit I (mt COI) from Manduca sexta (Lepidoptera: Sphingidae) was cloned and sequenced. AT (adenine-thymine) content is high and codon usage is biased and likely reflects the role of mt COI in electron transport. The encoded protein is 514 amino acids long, contains seven invariant His residues observed in COIs in all organisms and would be predicted to be composed of 12 transmembrane regions.  相似文献   

19.
20.
DNA sequencing of the region downstream of the cellulose synthase catalytic subunit gene of Acetobacter xylinum led to the identification of an open reading frame coding for a polypeptide of 86 kDa. The deduced amino acid sequence of this polypeptide matches from position 27 to 40 with the N-terminal amino acid sequence determined for a 93 kDa polypeptide that copurifies with the cellulose synthase catalytic subunit during purification of cellulose synthase. The cellulose synthase catalytic subunit gene and the gene encoding the 93 kDa polypeptide, along with other genes probably, are organized as an operon for cellulose biosynthesis in which the first gene is the catalytic subunit gene and the second gene codes for the 93 kDa polypeptide. The function of the 93 kDa polypeptide is not clear at present, however it appears to be tightly associated with the cellulose synthase catalytic subunit. Sequence analysis of the polypeptide shows that it is a membrane protein with a signal sequence at the N-terminal end and a transmembrane helix in the C-terminal region for anchoring it into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号