首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Following tissue injury, a fibrin network formed at the wound site serves as a scaffold supporting the early migration of stromal cells needed for wound healing. Growth factors such as insulin-like growth factor-I (IGF-I) concentrate in wounds to stimulate stromal cell function and proliferation. The ability of IGF-binding proteins (IGFBPs) such as IGFBP-3 to reduce the rate of IGF-I clearance from wounds suggests that IGFBP-3 might bind directly to fibrinogen/fibrin. Studies presented here show that IGFBP-3 does indeed bind to fibrinogen and fibrin immobilized on immunocapture plates, with K(d) values = 0.67 and 0.70 nM, respectively, and competitive binding studies suggest that the IGFBP-3 heparin binding domain may participate in this binding. IGF-I does not compete for IGFBP-3 binding; instead, IGF-I binds immobilized IGFBP-3.fibrinogen and IGFBP-3.fibrin complexes with affinity similar to that of IGF-I for the type I IGF receptor. In the presence of plasminogen, most IGFBP-3 binds directly to fibrinogen, although 35-40% of the IGFBP-3 binds to fibrinogen-bound plasminogen. IGFBP-3 also binds specifically to native fibrin clots, and addition of exogenous IGFBP-3 increases IGF-I binding. These studies suggest that IGF-I can concentrate at wound sites by binding to fibrin-immobilized IGFBP-3, and that the lower IGF affinity of fibrin-bound IGFBP-3 allows IGF-I release to type I IGF receptors of stromal cells migrating into the fibrin clot.  相似文献   

2.
Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[alpha(32)P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[alpha(32)P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca(2+) flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.  相似文献   

3.
The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.  相似文献   

4.
Streptococcus agalactiae is an etiological agent of several infective diseases in humans. We previously demonstrated that FbsA, a fibrinogen-binding protein expressed by this bacterium, elicits a fibrinogen-dependent aggregation of platelets. In the present communication, we show that the binding of FbsA to fibrinogen is specific and saturable, and that the FbsA-binding site resides in the D region of fibrinogen. In accordance with the repetitive nature of the protein, we found that FbsA contains multiple binding sites for fibrinogen. By using several biophysical methods, we provide evidence that the addition of FbsA induces extensive fibrinogen aggregation and has noticeable effects on thrombin-catalyzed fibrin clot formation. Fibrinogen aggregation was also found to depend on FbsA concentration and on the number of FbsA repeat units. Scanning electron microscopy evidentiated that, while fibrin clot is made of a fine fibrillar network, FbsA-induced Fbg aggregates consist of thicker fibers organized in a cage-like structure. The structural difference of the two structures was further indicated by the diverse immunological reactivity and capability to bind tissue-type plasminogen activator or plasminogen. The mechanisms of FbsA-induced fibrinogen aggregation and fibrin polymerization followed distinct pathways since Fbg assembly was not inhibited by GPRP, a specific inhibitor of fibrin polymerization. This finding was supported by the different sensitivity of the aggregates to the disruptive effects of urea and guanidine hydrochloride. We suggest that FbsA and fibrinogen play complementary roles in contributing to thrombogenesis associated with S. agalactiae infection.  相似文献   

5.
Hess JL  Boyle MD 《Proteomics》2006,6(1):375-378
In this study, the importance of different domains of the fibrinogen molecule in the binding and assembly of a surface plasminogen (plgn) activator has been analyzed. This was achieved using SELDI technology that enabled dissociation of bound fragments from intact bacteria and accurate distinction between fibrinogen fragments based on their molecular mass. These studies indicate that Streptococcus pyogenes binds directly to human fibrinogen fragment D but not fragment E. The predominant surface proteins binding to fragment D were associated with the mrp gene product. Surface-associated fibrinogen fragment D was capable of anchoring a functional surface plgn activator complex. Taken together, these data indicated that fragment D of fibrinogen is necessary and sufficient to anchor a plgn activator complex on the surface of Streptococcus pyogenes.  相似文献   

6.
Platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether) triggers exposure of fibrinogen binding sites on platelets via binding to specific receptors. Comparison of [3H]PAF-acether binding with 125I-fibrinogen binding shows that the rate with which PAF-acether binds to a number of receptors and not the degree of receptor occupancy determines how much fibrinogen binds. At low concentrations of PAF-acether (0.1-1.0 nM) binding site exposure is incomplete and parallels the rate of formation of the PAF-acether-receptor complex. Fibrinogen binding then primarily depends on the concentration of PAF-acether. At a high concentration of PAF-acether (500 nM) binding site exposure is complete within 2-5 min. Fibrinogen binding then depends on the concentration of fibrinogen. Exposure of binding sites in the absence of fibrinogen leads to disappearance of accessible binding sites. At 500 nM PAF-acether, this disappearance is exponential in nature and shows the same characteristics after 5-15 min incubation with fibrinogen as after 60 min. Exposure of binding sites is then complete within 5 min and their disappearance is not disturbed by other processes. At 0.5 nM PAF-acether, the same characteristics are found after 60 min incubation with fibrinogen, but shorter incubation times reveal an ongoing binding site exposure that interferes with the disappearance process. These results demonstrate close coupling between the PAF-acether receptors and fibrinogen binding sites and indicate that the rate of formation of the PAF-acether-receptor complex is a major factor in the regulation of binding site exposure.  相似文献   

7.
Plasminogen recruitment is a common strategy of pathogenic bacteria and results in a broad-spectrum surface-associated protease activity. Neisseria meningitidis has previously been shown to bind plasminogen. In this study, we show by several complementary approaches that endolase, DnaK, and peroxiredoxin, which are usually intracellular proteins, can also be located in the outer membrane and act as plasminogen receptors. Internal binding motifs, rather than C-terminal lysine residues, are responsible for plasminogen binding of the N. meningitidis receptors. Recombinant receptor proteins inhibit plasminogen association with N. meningitidis in a concentration-dependent manner. Besides binding purified plasminogen, N. meningitidis can also acquire plasminogen from human serum. Activation of N. meningitidis-associated plasminogen by urokinase results in functional activity and allows the bacteria to degrade fibrinogen. Furthermore, plasmin bound to N. meningitidis is protected against inactivation by alpha(2)-antiplasmin.  相似文献   

8.
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.  相似文献   

9.
Previous studies from this laboratory have demonstrated that plasminogen binds to endothelial cell surface-associated actin via its kringles in a dose-dependent and specific manner. The purpose of this study was to determine whether angiostatin, a proteolytic fragment of plasminogen, shares binding properties with plasminogen. Our results indicated that like plasminogen, angiostatin bound to actin in a time-, concentration-, and kringle-dependent manner. Furthermore, this binding was significantly inhibited by excess plasminogen, suggesting that both proteins shared binding motifs on the actin molecule. Fluorescence studies demonstrated that angiostatin bound to intact endothelial cells through its kringles, and this binding was also inhibited by plasminogen but not by unrelated proteins. Ligand blot analyses on endothelial cell lysates indicated that angiostatin interacted with a 42 kDa protein, which was identified as actin. Furthermore, an anti-actin antibody inhibited binding of angiostatin to endothelial cells by approximately 25%. These results suggest that angiostatin and plasminogen share binding to endothelial cell surface actin and, therefore, that angiostatin has the potential to inhibit plasmin-dependent processes such as cell migration-movement.  相似文献   

10.
Alterations in the membrane organization caused by fibrinogen binding to human blood platelets and their isolated membranes were analyzed by fluorescence and electron spin resonance measurements. The degree of fluorescent anisotropy of DPH, ANS and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Both fluorescence and ESR analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase of the membrane lipid rigidity. This effect seems to be indirect in nature and is mediated by altered membrane protein interactions. As it has been shown that an increased membrane lipid rigidity leads to a greater exposure of membrane proteins, including fibrinogen receptors, this might facilitate a formation of molecular linkages between neighboring platelets. On the other hand, changes of fluorescence anisotropy of membrane tryptophans and N-(3-pyrene) maleimide suggest the augmented mobility of the membrane proteins. Evidence is presented which indicated that the binding of fibrinogen to the membrane receptors is not accompanied by any changes in the fluorescence intensity of ANS attached to the membranes. It may suggest that the covering of platelets with fibrinogen does not influence the surface membrane charge. In contrast to fibrinogen, calcium ions caused an increase of the fluorescence intensity resulting from the more efficient binding of ANS to the platelet membranes.  相似文献   

11.
Interaction of plasminogen K 1-3 and K 4 fragments containing lysine binding sites with fibrinogen and its fragments has been investigated. It has been established that K 1-3 fragment binds to fibrinogen and its E and DL fragments. K 4 fragment does not bind to E and DL fragments, but it interacts with fibrinogen. K 4 fragment does not interact with early fibrinogen proteolysis X2 fragment which differs from the native molecule of fibrinogen in the alpha C domain absence. The results obtained indicate that lysine binding sites located at plasminogen K 1-3 and K 4 fragments correspond to different fibrinogen molecule centres. The centre complementary to K 4 fragment lysine binding sites could be located at the fibrinogen alpha C domain.  相似文献   

12.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

13.
Selmeci L 《Free radical research》2011,45(10):1115-1123
In 1996, a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. It was suggested that AOPP measure highly oxidized proteins, especially albumin. Recent data in turn appear to indicate that oxidized fibrinogen is the key molecule responsible for the AOPP reaction in the human plasma. Since fibrinogen is an acute-phase reactant, it is evident that during each episode of inflammatory response, the antioxidant capacity of the plasma is enhanced. In this context, fibrinogen can be regarded as a component of the antioxidant system of the plasma proteome. It was also demonstrated that oxidized fibrinogen is bound to apolipoprotein(a) of lipoprotein(a) via lysine binding sites. Thus, apo(a) could compete with plasminogen (and/or tissue plasminogen activator) for its binding sites of fibrin(ogen), causing inhibition of fibrinolysis, and thereby promote atherosclerosis and cardiovascular disease.  相似文献   

14.
The human pathogenic yeast Candida albicans utilizes host complement regulators for immune evasion. Here we identify the first fungal protein that binds Factor H and FHL-1. By screening a protein array of 4088 proteins of Saccharomyces cerevisiae, phosphoglycerate mutase (ScGpm1p) was identified as a Factor H- and FHL-1-binding protein. The homologous C. albicans Gpm1p (CaGpm1p) was cloned and recombinantly expressed as a 36-kDa His-tagged protein. Purified CaGpm1p binds the host complement regulators Factor H and FHL-1, but not C4BP. The CaGpm1p binding regions in the host proteins were localized; FHL-1 binds via short consensus repeats (SCRs) 6 and 7, and Factor H utilizes two contact regions that are located in SCRs 6 and 7 and in SCRs 19 and 20. In addition, recombinant CaGpm1p binds plasminogen via lysine residues. CaGpm1p is a surface protein as demonstrated by immunostaining and flow cytometry. A C. albicans gpm1(-/-) mutant strain was generated that did not grow on glucose-supplemented but on ethanol- and glycerol-supplemented medium. Reduced binding of Factor H and plasminogen to the null mutant strain is in agreement with the presence of additional binding proteins. Attached to CaGpm1p, each of the three host plasma proteins is functionally active. Factor H and FHL-1 show cofactor activity for cleavage of C3b, and bound plasminogen is converted by urokinase-type plasminogen activator to proteolytically active plasmin. Thus, the surface-expressed CaGpm1p is a virulence factor that utilizes the host Factor H, FHL-1, and plasminogen for immune evasion and degradation of extracellular matrices.  相似文献   

15.
Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both plasminogen fragments induce Ca(2+) signaling cascades; however, kringle 5 acts through voltage-dependent anion channel and microplasminogen does so via the glucose-regulated protein 78. Because trafficking of voltage-dependent anion channel to the cell surface is associated with heat shock proteins, we investigated a possible association between voltage-dependent anion channel and glucose-regulated protein 78 on the surface of 1-LN human prostate tumor cells. We demonstrate that these proteins co-localize, and changes in the expression of the glucoseregulated protein 78 affect the expression of voltage-dependent anion channel. To differentiate the functions of these receptor proteins, either when acting singly or as a complex, we employed human hexokinase I as a specific ligand for voltage-dependent anion channel, in addition to kringle 5. We show that kringle 5 inhibits 1-LN cell proliferation and promotes caspase-7 activity by a mechanism that requires binding to cell surface voltage-dependent anion channel and is inhibited by human hexokinase I.  相似文献   

16.
17.
Fibronectin is a dimeric glycoprotein (Mr 440,000) involved in many adhesive processes. During blood coagulation it is bound and cross-linked to fibrin. Fibrin binding is achieved by structures (type I repeats) which are homologous to the "finger" domain of tissue plasminogen activator. Tissue plasminogen activator also binds to fibrin via the finger domain and additionally via the "kringle 2" domain. Fibrin binding of tissue plasminogen activator results in stimulation of its activity and plays a crucial role in fibrinolysis. Since fibronectin might interfere with this binding, we studied the effect of fibronectin on plasmin formation by tissue plasminogen activator. In the absence of fibrin, fibronectin had no effect on plasminogen activation. In the presence of stimulating fibrinogen fragment FCB-2, fibronectin increased the duration of the initial lag phase (= time period until maximally stimulated plasmin formation occurs) and decreased the rate of maximal plasmin formation which occurs after that lag phase mainly by increasing the Michaelis constant (Km). These effects of fibronectin were dose-dependent and were similar with single- and two-chain tissue plasminogen activator. They were also observed with plasmin-pretreated FCB-2. An apparent Ki of 43 micrograms/ml was calculated for the inhibitory effect of fibronectin when plasminogen activation by recombinant single-chain tissue plasminogen activator was studied in the presence of 91 micrograms/ml FCB-2. When a recombinant tissue plasminogen activator mutant lacking the finger domain was used in a system containing FCB-2, no effect of fibronectin was seen, indicating that the inhibitory effect of fibronectin might in fact be due to competition of fibronectin and tissue plasminogen activator for binding to fibrin(ogen) via the finger domain.  相似文献   

18.
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s–1 and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s–1, indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A. adhesion; red blood cell  相似文献   

19.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

20.
Pathogenic microbes acquire the human plasma protein plasminogen to their surface. In this article, we characterize binding of this important coagulation regulator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surface protein E (PE) as a new plasminogen-binding protein. Plasminogen binds dose dependently to intact bacteria and to purified PE. The plasminogen-PE interaction is mediated by lysine residues and is also affected by ionic strength. The H. influenzae PE knockout strain (nontypeable H. influenzae 3655Δpe) bound plasminogen with ~65% lower intensity as compared with the wild-type, PE-expressing strain. In addition, PE expressed ectopically on the surface of Escherichia coli also bound plasminogen. Plasminogen, either attached to intact H. influenzae or bound to PE, was accessible for urokinase plasminogen activator. The converted active plasmin cleaved the synthetic substrate S-2251, and the natural substrates fibrinogen and C3b. Using synthetic peptides that cover the complete sequence of the PE protein, the major plasminogen-binding region was localized to a linear 28-aa-long N-terminal peptide, which represents aa 41-68. PE binds plasminogen and also vitronectin, and the two human plasma proteins compete for PE binding. Thus, PE is a major plasminogen-binding protein of the Gram-negative bacterium H. influenzae, and when converted to plasmin, PE-bound plasmin aids in immune evasion and contributes to bacterial virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号