首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Meiotic drive is an evolutionary force in which natural selection is uncoupled from organismal fitness. Recently, it has been proposed that meiotic drive and genetic drift represent major forces in the evolution of the mammalian karyotype. Meiotic drive involves two types of genetic elements, Responders and Distorters , the latter being required to induce transmission ratio distortion at the former. We have previously described the Om meiotic drive system in mouse chromosome 11. To investigate the natural history of this drive system we have characterized the alleles present at the distorter in wild-derived inbred strains. Our analysis of transmission of maternal alleles in both classical and wild-derived inbred strains indicated that driving alleles are found at high frequency in natural populations and that the existence of driving alleles predates the split between the Mus spicilegus and M. musculus lineages.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 487–492.  相似文献   

2.
Interindividual variation in niche presents a potentially central object on which natural selection can act. This may have important evolutionary implications because habitat use governs a suite of selective forces encountered by foragers. In a free-living native black-tailed deer, Odocoileus hemionus , population from coastal British Columbia, we used stable isotope analysis to identify individual variation in foraging niche and investigated its relationship to fitness. Using an intragenerational comparison of surviving and nonsurviving O. hemionus over 2 years of predation by wolves, Canis lupus, we detected resource-specific fitness. Individuals with isotopic signatures that suggested they foraged primarily in cedar ( Thuja plicata )-dominated and low-elevation hemlock ( Tsuga heterophylla )-dominated forest stands were more likely to be killed by C. lupus . High-quality forage in T. plicata stands, as indexed by protein content, may be involved in maintaining this foraging phenotype. Moreover, nonsurvivors diverged more than survivors from median isotopic signatures, suggesting selection against foraging specialization. Stable isotope analysis provides a novel opportunity to integrate ecological and selective landscapes in order to identify underlying ecological mechanisms of selection and provide insight into the maintenance of variability.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 125–137.  相似文献   

3.
The effect of mutualists (i.e. pollinators) and antagonists (i.e. herbivores) can have non-additive effects on plant fitness. This is often interpreted as evidence for correlated evolution on a suite of traits leading to an increase and decrease of the interaction of plants with mutualists and antagonists, respectively. This situation has been found to prevail in plants that have large floral and fruit displays but are not limited by pollinators for seed set. We suggest the alternative hypothesis, where plants limited by pollinators for seed set (e.g. deceit-pollinated plants) exhibit additive effects of pollinators and herbivores on fitness (i.e. noncorrelated evolution). Using a 2 × 2 factorial design, we tested this hypothesis by solely and simultaneously evaluating the effects of pollinators and the single herbivore, Battus polydamas archidamas , on female reproductive success of Aristolochia chilensis . Plants exposed to herbivores presented 2.6-fold greater herbivory than plants that excluded them. In addition, plants exposed to pollinators showed strong limitation by pollinators for seed set compared with other plants of the genus Aristolochia. However, only pollinators had a significant effect on fruit and seed set because plants that excluded them did not set fruits or seeds. Furthermore, herbivores and pollinators exerted additive effects on fruit and seed production. Collectively, these results indicate that herbivore- and pollinator-linked traits in A. chilensis exhibit noncorrelated evolution.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 239–245.  相似文献   

4.
Variation in traits affecting preference for, and performance on, new habitats is a key factor in the initiation of ecological specialisation and adaptive speciation. However, habitat and resource use also involves other traits whose influence on ecological and genetic divergence remains poorly understood. In the present study, we investigated the extent of variation of life-history traits among sympatric populations of the pea aphid Acyrthosiphon pisum , which shows several host races that are specialised on various plants of the family Fabaceae plants and is an established model for ecological speciation. First, we assessed the community structure of microbial partners within host populations of the pea aphid. The effect of these microbes on host fitness is uncertain, although there is growing evidence that they may modulate various important adaptive traits of their host such as plant utilisation and resistance against natural enemies. Second, we performed a multivariate analysis on several ecologically relevant features of host populations recorded in the present and previous studies (including microbial composition, colour morph, reproductive mode, and male dispersal phenotype), enabling the identification of correlations between phenotypic traits. We discuss the ecological significance of these associations of traits in relation to the habitat characteristics of pea aphid populations, and their consequences for the evolution of ecological specialisation and sympatric speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 718–727.  相似文献   

5.
Recent studies have shown the value of complementing standard taxonomy with genetic analyses to reveal cryptic diversity and to aid in the understanding of patterns of evolution. We surveyed variation in the COI mitochondrial gene in members of the three genera of centropagid copepods from the inland waters in Argentina. In general, we found a close association between molecular and morphological systematics in this group. Similar to findings for marine calanoids, genetic distances within Boeckella species were modest (< 4%), while distances among morphospecies were much larger (> 11%). Parabroteas is currently monotypic, although we detected cryptic genetic diversity, with two lineages showing 5.5% divergence. In contrast, Karukinka was not a valid genus, apparently representing an interesting and atavistic offshoot of B. poppei , a result reinforcing the value of considering both morphological and molecular evidence. Moreover, we used combined genetic and morphological information, analysed with maximum likelihood methods, to evaluate the common assumption that evolution tends to proceed via the loss of structures in crustaceans. Although analysis of other taxa and character types is required to evaluate fully the reduction hypothesis, our results suggest that structures may be gained readily as well as lost.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 279–292.  相似文献   

6.
This study reports the molecular characterization, polymorphism, and phylogenetic relationships of Triticum aestivum , T. dicoccoides , T. urartu , and T. monococcum ssp. boeoticum , obtained from different locations in Anatolia, using 33 primer combinations to generate amplified fragment length polymorphism (AFLP) patterns in 31 individual plant samples. The objectives of this work were to estimate the phylogenetic relationships between these species and to investigate the genetic distance as a result of ecological and climatic factors. The origin of the A genome of polyploid wheats is also discussed. Eight hundred and seventy-five AFLP fragments had polymorphic loci, 133 of which were unique to T. monococcum ssp. boeoticum , 66 were unique to T. urartu , and 141 were unique to T. dicoccoides . Analysis using the program POPGENE showed polymorphism levels of T. monococcum ssp. boeoticum , T. urartu , and T. dicoccoides of 42.63, 32.34, and 27.71%, respectively. No correlation between genetic distance and ecological or climatic factors was recorded in this study. Our results support the hypothesis that T. urartu is a diploid ancestor of T. dicoccoides and T. aestivum .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 67–72.  相似文献   

7.
Predation has important ecological and evolutionary consequences. Evolutionary responses to diversifying selection include genetic differentiation, the evolution of adaptive phenotypic plasticity, and the genetic differentiation of plastic responses between populations. We tested if pumpkinseed sunfish ( Lepomis gibbosus ) respond to predation cues by changing their external body form in functionally sensible ways. We then asked whether predation has influenced the divergence of coexisting littoral and pelagic ecomorphs, by testing for divergent predator-induced responses. Juvenile L. gibbosus of both ecomorphs were reared with and without predation cues supplied by walleye ( Sander vitreus ) feeding on L. gibbosus . Predation cues stimulated increased body depth and dorsal spine length, but no increase in anal spine length or pectoral fin size. The dorsal spines of pelagic ecomorphs also grew longer than did those of littoral ecomorphs, while positive body depth responses were similar in both ecomorphs. This is the second fish taxa in which predator-induced morphological responses have been found, and the first in which divergent responses have been detected between ecomorphs. This suggests that the developmental systems of L. gibbosus ecomorphs have diverged under selection related to predation. We propose that other 'resource polymorphisms' in fishes have evolved under selection arising from a variety of factors, including predation, and not just selection related to resource use.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 25–36.  相似文献   

8.
Analysis of ecological characters on phylogenetic frameworks has only recently appeared in the literature, with several studies addressing patterns of niche evolution, generally over relatively recent time frames. In the present study, we examined patterns of niche evolution for a broad radiation of American blackbird species (Family Icteridae), exploring more deeply into phylogenetic history. Within each of three major blackbird lineages, overlap of ecological niches in principal components analysis transformed environmental space varied from high to none. Comparative phylogenetic analyses of ecological niche characteristics showed a general pattern of niche conservatism over evolutionary time, with differing degrees of innovation among lineages. Although blackbird niches were evolutionarily plastic over differing periods of time, they diverged within a limited set of ecological possibilities, resulting in examples of niche convergence among extant blackbird species. Hence, an understanding of the patterns of ecological niche evolution on broad phylogenetic scales sets the stage for framing questions of evolutionary causation, historical biogeography, and ancestral ecological characteristics more appropriately.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 869–878.  相似文献   

9.
The utility of maintaining distinct macroevolutionary and microevolutionary theory has long been debated. Although population and quantitative genetics provide an extensive list of microevolutionary forces that might explain macroevolutionary trends, studies of these processes are temporally limited and may fail to fully explain macroevolutionary patterns. To understand the relationship between the macroevolutionary pattern and microevolutionary forces, we must first understand how different populations respond to a given novel environment over hundreds or even thousands of generations. This study details the tempo of fitness gain over 2000 generations in four replicate lineages from each of five different ancestral Escherichia coli clones. Adaptive tempo was measured in the evolved lineages and ancestry was a significant source of variation in that tempo. Microevolutionary theory suggests that adaptive tempo should be proportional to the distance from an optimum phenotype. Demographic fitness measures allowed estimation of the ancestral distance from an optimum in the present study. Ancestral distance from an optimum was significantly related to adaptive tempo but it did not account for all of the observed variation. This suggests the existence of both ancestor and clade specific constraints. Understanding the role of such constraints is critical to both microevolutionary and macroevolutionary theory.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 403–411.  相似文献   

10.
Fluctuating asymmetry (FA) is often, but controversially, viewed as an indicator of fitness and a target of selection. In the brook stickleback, Culaea inconstans (Kirtland), FA of the pectoral fins, which are the main source of propulsion, is inversely correlated with fecundity. We examined the hypothesis that asymmetry of the pectoral fins could affect locomotion in such a way as to influence foraging and niche use in prereproductive brook stickleback. Nitrogen and carbon stable isotope analysis showed the diet of symmetric and asymmetric males diverged with increasing body size. Larger symmetric males fed at higher trophic levels and had a diet based on carbon emanating from a more pelagic source than their asymmetric counterparts. Such effects were not observed in females or smaller males. The number of chironomid larvae found in the gut was greater on average in asymmetric than symmetric fish. The results from this study strongly suggest FA of pectoral fins affects the foraging behaviour of C. inconstans and that stable isotope analyses of individual phenotypes provides a useful tool for assessing the ecological consequences of FA.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 617–623.  相似文献   

11.
The pace and trajectory of coevolutionary arms races between parasites and their hosts are strongly influenced by the number of interacting species. In environments where a parasite has access to more than one host species, the parasite population may become divided in preference for a particular host. In the present study, we show that individual colonies of the pirate ant Polyergus breviceps differ in host preference during raiding, with each colony specializing on only one of two available Formica host species. Moreover, through genetic analyses, we show that the two hosts differ in their colony genetic structure. Formica occulta colonies were monogynous, whereas Formica  sp. cf. argentea colonies were polygynous and polydomous (colonies occupy multiple nest sites). This difference has important implications for coevolutionary dynamics in this system because raids against individual nests of polydomous colonies have less impact on overall host colony fitness than do attacks on intact colonies. We also used primers that we designed for four microsatellite loci isolated from P. breviceps to verify that colonies of this species, like other pirate ants, are comprised of simple families headed by one singly mated queen.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 565–572.  相似文献   

12.
Leiopotherapon unicolor is the most widespread freshwater fish species in Australia. A comprehensive allozyme and mitochondrial DNA 16S rRNA data set was assembled from 141 specimens of L. unicolor collected Australia-wide in order to test for cryptic speciation in this far-ranging species. Surprisingly, little genetic diversity was observed within L. unicolor and provided no evidence for the existence of cryptic species within this lineage. In contrast, a small sample set of L. aheneus used as the outgroup showed two highly divergent haplotypes strongly suggestive of cryptic speciation. L. unicolor has a number of ecological and life history attributes that may explain the lack of significant genetic divergence over substantial geographical distances. The occurrence of other widespread fish and crustacean species that also display only limited genetic diversity indicate that climate conditions more favourable to dispersal across central and northern Australia than is suggested by the extent of present-day aridity have occurred in the relatively recent geological past.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 537–552.  相似文献   

13.
Shell outlines of 202 extant cytheroidean ostracods were analysed in dorsal, lateral, and posterior views by elliptic Fourier analysis. The results obtained confirm that the exterior morphology is related to ecological factors as well as phylogenetic constraints. Phytal species living on tall seagrass and benthic species burrowing in sediments are characterized and differentiated from the species crawling on sediments by the presence of slender shells with tapered venters. With reference to reconstruction of ancestral state of outline traits on the molecular phylogeny, the hypothetical ancestor of cytheroidean ostracods is presumed to have had an average-shaped shell. Morphological plasticity of the shell outline was observed in many families. The phytal species living on tall seagrass appear to have evolved convergently with species from other habitats, acquiring slim shell outlines during the Cenozoic period. The present analysis also reveals the phylogenetic constraints on the morphological evolution of the Trachyleberididae in their adaptation to a burrowing habit.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 810–821.  相似文献   

14.
A cytogenetic study of 62 populations of Santolina pectinata in Spain shows the existence of two ploidy levels. The diploid cytotypes with 2 n  = 18 occupy the eastern Betic mountains, and the tetraploid cytotypes with 2 n  = 36 are located on the spurs of the Iberian System. The former show a much wider ecological spectrum than the latter. Mixed cytotypes were observed in two diploid populations, with one tetraploid in each, showing different karyotypes. Three trisomic individuals were detected, one in a diploid population and the other two in a tetraploid population. Also, three hypotetraploid individuals were detected in a tetraploid population. Polyploidy is shown to be spontaneous and recurrent, promoting partial sterility in the pollen. Structural chromosomal changes, principally translocations, and local speciation through autopolyploidy are the principal factors in the evolution and diversification of this species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 657–667.  相似文献   

15.
Gut length plasticity in perch: into the bowels of resource polymorphisms   总被引:1,自引:0,他引:1  
Resource polymorphisms, intraspecific variation in morphology due to differential resource use, are common across a wide range of animal taxa. The focus in studies of such polymorphisms has been on external morphology, but the differential use of food resources could also influence other phenotypic traits such as the digestive performance. In the present study, we experimentally demonstrate that Eurasian perch ( Perca fluviatilis L.) display adaptive plasticity in gut length when exposed to different food types. Perch fed a less digestible food type developed relatively longer guts compared to fish fed a more easily digested food type. This divergence in gut length was also apparent under natural conditions because perch inhabiting the littoral and pelagic habitats of a lake differed in resource use and relative gut length. Despite that the digestive system in perch is plastic, we found that individuals switching to a novel food type might experience an initial fitness cost of the diet switch in the form of a temporary reduction in body condition. These results show the importance of gut length plasticity for an ontogenetic omnivore but also a cost that might prevent diet switching in polymorphic populations.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 517–523.  相似文献   

16.
Genomic creativity and natural selection: a modern synthesis   总被引:2,自引:0,他引:2  
In the early 1930s, the synthesis of Darwinian natural selection, mutation, and Mendelian genetics gave rise to the paradigm of 'modern Darwinism', also known as 'neo-Darwinism'. This has contributed greatly to our understanding. But increasing knowledge of other mechanisms, including endosymbiosis, genetic and genomic duplication, polyploidy, hybridization, epigenetics, horizontal gene transfer in prokaryotes, and the modern synthesis of embryonic development and evolution, has widened our horizons to a diversity of possibilities for change. All of these can be gathered under the umbrella concept of 'genomic creativity', which, in partnership with natural selection, affords a more comprehensive modern explanation of evolution.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 655–672.  相似文献   

17.
Polyploidy and the sexual system: what can we learn from Mercurialis annua?   总被引:1,自引:0,他引:1  
The evolutionary success of polyploidy most directly requires the ability of polyploid individuals to reproduce and transmit their genes to subsequent generations. As a result, the sexual system (i.e. the mating system and the sex allocation of a species) will necessarily play a key role in determining the fate of a new polyploid lineage. The effects of the sexual system on the evolution of polyploidy are complex and interactive. They include both aspects of the genetic system, the genetic load maintained in a population and the ecological context in which selection takes place. Here, we explore these complexities and review the empirical evidence for several potentially important genetic and ecological interactions between ploidy and the sexual system in plants. We place particular emphasis on work in our laboratory on the European annual plant Mercurialis annua , which offers promising scope for detailed investigations on this topic. M. annua forms a polyploid complex that varies in its sexual system from dioecy (separate sexes) through androdioecy (males and hermaphrodites) to functional hermaphroditism.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 547–560.  相似文献   

18.
Cochlearia polonica , a narrow endemic of southern Poland, is one of the rarest and most endangered species of the European flora. All natural populations are extinct and the species has survived in only one transplanted population derived from 14 original individuals. Using AFLPs, the genetic variation and spatial structure of this population were analysed approximately 30 years after transplantation. The incidence of polymorphic AFLP bands (30.46%) is low compared with data from a natural population of another Cochlearia species, C. tatrae . Principal co-ordinates and spatial autocorrelation analyses demonstrated the presence of significant genetic structure. It is recommended that conservation efforts on C. polonica should preserve the complete population area, because local extinctions may lead to a loss of genetic information. The presence of genetic structure should also be taken into account during the sampling of material (plants or seeds) for ex situ conservation measures.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 527–532.  相似文献   

19.
This work comprises 24 reports of chromosome numbers in 24 Artemisia L. species from Asia. Ten are included in the subgenus Dracunculus Besser and the rest belong to other subgenera. Seven counts are new reports, 14 are consistent with scarce previous ones, and three contribute new ploidy levels. That carried out in A. medioxima reports the highest ploidy level ever counted for the genus (16 x ). There is only one species with x  = 8 as the basic chromosome number. In the remaining x  = 9-based species, ploidy levels range from 2 x to 16 x , illustrating the great role played by polyploidy in the evolution of the genus.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 301–310.  相似文献   

20.
The genetic divergence and the phylogenetic relationships of six Atherina boyeri (freshwater and marine origin) and five Atherina hepsetus populations from Greece were investigated using partial sequence analysis of 12s rRNA, 16s rRNA and control region mtDNA segments. Three different well divergent groups were revealed; the first one includes A. boyeri populations living in the sea, the second includes A. boyeri populations living in the lakes and lagoons whereas the third one includes all A. hepsetus populations. Fifty-seven different haplotypes were detected among the populations studied. In all three mtDNA segments examined, sequence analysis revealed the existence of fixed haplotypic differences discriminating A. boyeri populations inhabiting the lagoon and the lakes from both the coastal A. boyeri and the A. hepsetus populations. The genetic divergence values estimated between coastal (marine) A. boyeri populations and those living in the lagoon and the lakes are of the same order of magnitude as those observed among coastal A. boyeri and A. hepsetus populations. The results obtained by different phylogenetic methods were identical. The deep sequence divergence with the fixed different haplotypes observed suggests the occurrence of a cryptic or sibling species within A. boyeri complex.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 151–161.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号