首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differences in physical properties of air and water pose unique behavioural and physiological demands on semiaquatic animals. The aim of this study was to describe the diving behaviour of the freshwater crocodile Crocodylus johnstoni in the wild and to assess the relationships between diving, body temperature, and heart rate. Time-depth recorders, temperature-sensitive radio transmitters, and heart rate transmitters were deployed on each of six C. johnstoni (4.0-26.5 kg), and data were obtained from five animals. Crocodiles showed the greatest diving activity in the morning (0600-1200 hours) and were least active at night, remaining at the water surface. Surprisingly, activity pattern was asynchronous with thermoregulation, and activity was correlated to light rather than to body temperature. Nonetheless, crocodiles thermoregulated and showed a typical heart rate hysteresis pattern (heart rate during heating greater than heart rate during cooling) in response to heating and cooling. Additionally, dive length decreased with increasing body temperature. Maximum diving length was 119.6 min, but the greatest proportion of diving time was spent on relatively short (<45 min) and shallow (<0.4 m) dives. A bradycardia was observed during diving, although heart rate during submergence was only 12% lower than when animals were at the surface.  相似文献   

2.
Summary The effects of breathing different levels of O2 and CO2 before forced dives were investigated in 5 dabbling ducks (White Pekin) and 5 deep divers (Double Crested Cormorants). Breathing and heart rates, blood gases, and blood pH, were monitored. After breathing air before diving, ducks exhibited a slow decrease in heart rate that reached a minimum of 20 beats·min−1 after 50 s submergence. The development of bradycardia was retarded if the duck breathed a hyperoxic gas mixture before diving and was accelerated if the gas mixture was hypoxic and hypercapnic. The cormorants' diving heart rate decreased to a minimum of about 60 beats·min−1 in less than 20 s and development of bradycardia was unaffected by different levels of O2 and CO2 breathed before diving. Consequently, bradycardia in forced dived cormorants was unrelated to changes in blood gases in the dives which suggests that intravascular chemoreceptors are unimportant in initiating diving bradycardia in cormorants.  相似文献   

3.
Heart rates were recorded from double-crested cormorant chicks during their first ever and subsequent voluntary head submergences and dives, as well as during longer dives made after the chicks were accustomed to diving. Despite variation between chicks, the cardiac response to first ever and subsequent voluntary submergence (head submergences and dives) was similar to the response observed in adult cormorants. Upon submersion the heart rate fell rapidly when pre-submersion heart rate was high (325–350 beats min−1). The heart rate established within the first second of voluntary submergence was between 230 and 285 beats min−1, well above resting heart rate (143 beats min−1). The same initial cardiac response occurred during longer dives performed after the chicks were accustomed to diving. In these dives the heart rate remained at the level established on submersion, unlike the response observed in shallow diving adult cormorants in which the heart rate declined throughout the dive. The heart rate was also monitored in a separate group of chicks in which the first exposure to water was during whole body forced submergence. Again, the observed response was similar to the adult response, although the cardiac response of chicks to forced submergence was more extreme than to voluntary submergence. Our results do not support the hypothesis that learning (by conditioning or habituation) is involved in the cardiac adjustments to voluntary submergence. It is suggested that the initial cardiac adjustments are reflex in nature and this reflex is fully developed by the first submergence event. Although the nature of this reflex pathway is obscure, cessation of breathing before submersion and the close linkage between breathing and heart rate might provide a plausible mechanism.  相似文献   

4.
Harbour seals, Phoca vitulina, dive from birth, providing a means of mapping the development of the diving response, and so our objective was to investigate the postpartum development of diving bradycardia. The study was conducted May-July 2000 and 2001 in the St. Lawrence River Estuary (48 degrees 41'N, 68 degrees 01'W). Both depth and heart rate (HR) were remotely recorded during 86,931 dives (ages 2-42 d, n = 15) and only depth for an additional 20,300 dives (combined data covered newborn to 60 d, n = 20). The mean dive depth and mean dive durations were conservative during nursing (2.1 +/- 0.1 m and 0.57 +/- 0.01 min, range = 0-30.9 m and 0-5.9 min, respectively). The HR of neonatal pups during submersion was bimodal, but as days passed, the milder of the two diving HRs disappeared from their diving HR record. By 15 d of age, most of the dive time was spent at the lower diving bradycardia rate. Additionally, this study shows that pups are born with the ability to maintain the lower, more fully developed dive bradycardia during focused diving but do not do so during shorter routine dives.  相似文献   

5.
Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles'' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship.  相似文献   

6.
Heart rates were recorded from double-crested cormorant chicks during their first ever and subsequent voluntary head submergences and dives, as well as during longer dives made after the chicks were accustomed to diving. Despite variation between chicks, the cardiac response to first ever and subsequent voluntary submergence (head submergences and dives) was similar to the response observed in adult cormorants. Upon submersion the heart rate fell rapidly when pre-submersion heart rate was high (325-350 beats min-1). The heart rate established within the first second of voluntary submergence was between 230 and 285 beats min-1, well above resting heart rate (143 beats min-1). The same initial cardiac response occurred during longer dives performed after the chicks were accustomed to diving. In these dives the heart rate remained at the level established on submersion, unlike the response observed in shallow diving adult cormorants in which the heart rate declined throughout the dive. The heart rate was also monitored in a separate group of chicks in which the first exposure to water was during whole body forced submergence. Again, the observed response was similar to the adult response, although the cardiac response of chicks to forced submergence was more extreme than to voluntary submergence. Our results do not support the hypothesis that learning (by conditioning or habituation) is involved in the cardiac adjustments to voluntary submergence. It is suggested that the initial cardiac adjustments are reflex in nature and this reflex is fully developed by the first submergence event. Although the nature of this reflex pathway is obscure, cessation of breathing before submersion and the close linkage between breathing and heart rate might provide a plausible mechanism.  相似文献   

7.
We tested the hypothesis that immersion hypothermia enhances the diving capabilities of adult and juvenile muskrats by reducing rates of oxygen consumption (V O2). Declines in abdominal body temperature (T(b)) comparable to those observed in nature (0.5-3.5 degrees C) were induced by pre-chilling animals in 6 degrees C water. Pre-chilling did not reduce diving V O2 of any animal tested in 10 degrees C or 30 degrees C water, irrespective of the nature of the dive. Most behavioural indices of dive performance, including average and cumulative dive times, were unaffected by T(b) reduction in adults, but depressed in hypothermic juveniles (200-400 g). Hypothermia reduced diving heart rate only on short (<25s) dives (16% reduction, P=0.01), but did not affect the temporal onset of diving bradycardia. Post-immersion V O2 was higher for pre-chilled than for normothermic muskrats, but the difference became insignificant on longer (>90 s) dives. Our findings suggest that the mild hypothermia experienced by muskrats in nature has minimal effect on diving and post-immersion metabolic costs, and thus has little impact on the dive performance of this northern semi-aquatic mammal.  相似文献   

8.
  • 1.1. Both the small riparian skink Sphenomorphus quoyii and its completely terrestrial relative Ctenotus robustus respond to forced submergence with instantaneous bradycardia.
  • 2.2. The strength of the bradycardia was affected by water temperature and fear. Dives into hot (30°C) water produced weak and erratic bradycardia compared to dives into cold (19.5°C) water. For S. quoyii the strongest bradycardia occurred when submergence took place in water at a lower temperature than the pre-dive body temperature.
  • 3.3. Upon emergence both species of skink exhibited elevated heart rates and breathing rates while heating from 19.5 to 30°C, compared to heating at rest. The increased heart and breathing rates probably act to replenish depleted oxygen stores and remove any lactate. Increased heart and ventilation rates are not indicators of physiological thermoregulation in this case.
  • 4.4. Both lizard species exhibited higher heart rates and ventilation frequencies during heating than cooling.
  • 5.5. Compared to its terrestrial relative, S. quoyii does not appear to possess any major thermoregulatory, ventilatory or cardiovascular adaptations to diving. However, very small reptiles may be generally preadapted to use the water to avoid predators.
  相似文献   

9.
Swim speed and depth utilization were recorded at a sampling rate of 1 Hz in 14 free-ranging Adélie penguins in Adélie Land, Antarctica during the austral summers of 1996/1997 and 1998/1999. The average swim speeds during the descent, bottom and ascent phases of dives were independent of the maximum depth, while the variability in swim speed decreased with increasing maximum depth, reflecting the physiological constraints of diving. Descent speed, which varied less with maximum depth than speeds measured during other parts of dives, was significantly different among birds. In addition to the speed analysis, a new category of dive profiles with a flat bottom phase and an extremely reduced swim speed is reported. The probable benthic nature of such dives is discussed.  相似文献   

10.
Diving behaviour and diet of the blue-eyed shag at South Georgia   总被引:1,自引:1,他引:0  
Summary This paper describes a concurrent investigation of individual variation in diet, diving patterns and performance of blue-eyed shags Phalacrocorax atriceps breeding at South Georgia. Within one day individual shags exhibited one of three foraging strategies: short diving (4 birds, all dives 120 s) and mixed diving (15 birds, predominantly long but with a few short dives). The mean number of dives per day was significantly higher in shags that only made short dives (mean=172.0, SE=43.2) than birds with a mixed diving strategy (mean=40.5, SE=4.7) and birds that made only long dives (mean=30.8, SE=1.8). Diet was assessed using hard remains recovered from pellets regurgitated by the shags. Small nototheniid fish (c. 10 kJ per item) were by far the commonest prey but most pellets contained additional items. The frequency of pellets with additional items of higher energy value than nototheniid fish (10.c. 900 kJ per item), lower energy value (>1–10 kJ per item) and both higher and lower energy items was strikingly similar to the frequency of shags making long, short and both long and short dives respectively. Predicted aerobic dive limits suggested that during long dives, blue-eyed shags were probably sustained by anaerobic metabolism. Models of prey capture rates demonstrated that for both long and short diving, many items must be caught per dive when birds are feeding on prey at the lower end of the energy range. Predicted capture rates for the commonest recorded prey (small fish) differ markedly between the two diving strategies.  相似文献   

11.
Hallmarks of the mammalian diving response are protective apnea and bradycardia. These cardiorespiratory adaptations can be mimicked by stimulation of the trigeminal ethmoidal nerve (EN5) and reflect oxygen-conserving mechanisms during breath-hold dives. Increasing drive from peripheral chemoreceptors during sustained dives was reported to enhance the diving bradycardia. The underlying neuronal mechanisms, however, are unknown. In the present study, expression and plasticity of EN5-bradycardias after paired stimulation of the EN5 and peripheral chemoreceptors was investigated in the in situ working heart-brain stem preparation. Paired stimulations enhanced significantly the bradycardic responses compared with EN5-evoked bradycardia using submaximal stimulation intensity. Alternating stimulations of the EN5 followed by paired stimulation of the EN5 and chemoreceptors (10 trials, 3-min interval) caused a progressive and significant potentiation of EN5-evoked diving bradycardia. In contrast, bradycardias during paired stimulation remained unchanged during repetitive stimulation. The progressive potentiation of EN5-bradycardias was significantly enhanced after microinjection of the 5-HT(3) receptor agonist (CPBG hydrochloride) into the nucleus tractus solitarii (NTS), while the 5-HT(3) receptor antagonist (zacopride hydrochloride) attenuated the progressive potentiation. These results suggest an integrative function of the NTS for the multimodal mediation of the diving response. The potentiation or training of a submaximal diving bradycardia requires peripheral chemoreceptor drive and involves neurotransmission via 5-HT(3) receptor within the NTS.  相似文献   

12.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.  相似文献   

13.
The impact of relatively small externally attached time series recorders on some foraging parameters of seabirds was investigated during the austral summer of 1995 by monitoring the diving behaviour of 10 free-ranging king penguins (Aptenodytes patagonicus) over one foraging trip. Time-depth recorders were implanted in the abdominal cavities of the birds, and half of the animals also had dummy loggers attached on their backs. Although most of the diving behaviour was not significantly affected by the external loggers (P>0.05), the birds with externally attached loggers performed almost twice as many shallow dives, between 0 and 10 m depth, as the birds without external loggers. These shallow dives interrupted more frequently the deep-diving sequences in the case of birds with external loggers (percentage of deep dives followed by deep dives: 46% for birds with implants only vs. 26% for birds with an external attachment). Finally, the distribution pattern of the postdive durations plotted against the hour of the day was more heterogeneous for the birds with an external package. In addition, these penguins had extended surfacing times between two deep dives compared to birds without external attachments (P<0.0001). These results suggest the existence of an extra energy cost induced by externally attached loggers.  相似文献   

14.
Changes in heart rate (f H) and cloacal ventilation frequency (f C) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25°C. Given R. leukops’ high reliance on aquatic respiration via the cloacal bursae, the objective of this study was to examine the effect of varying aquatic PO2 levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f H and f C for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f H with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f C. Results suggest that R. leukops alters its strategy from aquatic O2 extraction via cloacal respiration in normoxia to O2 conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO2, presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.  相似文献   

15.
We used an acoustic tracking system to record under-ice movements of two free-ranging adult male Weddell seals. The two males were unconstrained and interacting with other Weddell seals at a breeding colony in McMurdo Sound, Antarctica. We reconstructed three-dimensional paths of 279 dives by these seals. All dives were less than 20-min duration and none were deeper than 220 m. These three-dimensional dive profiles were compared with conventional time-depth dive profiles recorded using microprocessor loggers. We assigned each of the 279 dives to 1 of 6 classes using an existing classification scheme on the basis of the time-depth trace. Within these, two-dimensionally derived, classes the actual three-dimensional dive profiles at times varied profoundly. Additional parameters obtained with the acoustic system, such as bearing and distance travelled between diving and surfacing points, demonstrate that significant, additional, biologically important information can be derived from the three-dimensional data. Accepted: 19 December 1999  相似文献   

16.
Sakai M  Wang D  Wang K  Li S  Akamatsu T 《PloS one》2011,6(12):e28836

Background

Observing and monitoring the underwater social interactions of cetaceans is challenging. Therefore, previous cetacean studies have monitored these interactions by surface observations. However, because cetaceans spend most of their time underwater, it is important that their underwater behavior is also continuously monitored to better understand their social relationships and social structure. The finless porpoise is small and has no dorsal fin. It is difficult to observe this species in the wild, and little is known of its sociality.

Methodology/Principal Findings

The swim depths of 6 free-ranging finless porpoises were simultaneously recorded using a time-synchronized bio-logging system. Synchronous diving was used as an index of association. Two pairs, #27 (an immature female estimated to be 3.5 years old) and #32 (an adult male), #28 (a juvenile male estimated to be 2 years old) and #29 (an adult male), tended to participate in long periods of synchronized diving more frequently than 13 other possible pairs, indicating that the 4 porpoises chose their social partners. The adult males (#32, #29) tended to follow the immature female (#27) and juvenile male (#28), respectively. However, during synchronized diving, the role of an initiator often changed within the pair, and their body movements appeared to be non-agonistic, e.g., rubbing of bodies against one another instead of that on one-side, as observed with chasing and escaping behaviors.

Conclusions/Significance

The present study employed a time-synchronized bio-logging method to observe the social relationships of free-ranging aquatic animals based on swimming depth. The results suggest that certain individuals form associations even if they are not a mother and calf pair. Long synchronized dives occurred when particular members were reunited, and this suggests that the synchronized dives were not a by-product of opportunistic aggregation.  相似文献   

17.
In order to monitor the diving behavior of free-ranging cetaceans, microdataloggers, with pre-programmed release mechanisms, were attached to the dorsal fins of two female harbor porpoises ( Phocoena phocoena ) in Funka Bay, Hokkaido, Japan, in 1994. The two loggers were successfully recovered and a total of 141 h of diving data (depth and water temperature in 4,671 dives) was obtained. Both porpoises dived almost continuously, rarely exhibiting long-term rest at the surface. Maximum dive depths were 98.6 m and 70.8 m, respectively, with more than 70% of diving time at 20 m or less. Most shallow dives were V-shaped with no bottom time. The V-shaped dives were significantly shallower in dive depth and shorter in dive duration than U-shaped dives. Descent rate was not constant during a dive. The deeper the dive depths, the faster the mean descent and initial descent rates. This suggests that porpoises have anticipated the depth to which they will dive before initiating the dive itself.  相似文献   

18.
The diving behaviour of the Shy Albatross Diomedea cauta was investigated using archival time-depth recorders (TDRs) and maximum depth gauges (MDGs). Data from birds carrying multiple devices and from diving simulations indicated that the degree of correspondence between TDRs and MDGs varied with the dive depth, duration and frequency, as well as with body placement. The MDGs were the most reliable when the diving depth was greater than 0.5 m, when the diving frequency was low and when gauges were placed on the birds' backs. The TDRs were used during late incubation and early chick rearing in 1994. Fifty-two dives (0.4 m) were recorded during 20 foraging trips of 15 individuals. The majority of dives were within the upper 3 m of the water column and lasted for less than 6 s. However, dives to 7.4 m and others lasting 19 s were recorded. The albatrosses dived between 07.00 h and 22.00 h, with peaks in their diving activity near midday and twilight. Mean diving depth varied throughout the day. with the deepest dives occurring between 10.00 h and 12.00 h. Two dive types were identified on the basis of the relationship between dive depth and descent rate. Plunge dives were short (5 s), and the birds reached a maximum depth of 2.9 m. Swimming dives were both longer and deeper. The characteristics of Shy Albatross plunge dives were similar to those of gannets Morus spp., which are known to be proficient plunge divers. Swimming dives suggest that Shy Albatrosses actively pursue prey underwater.  相似文献   

19.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

20.
Unrestrained Amazonian manatees (Trichechus inunguis) maintained a constant heart rate during diving and exhibited a slight tachycardia during breathing. 'Forcing' the manatees to dive caused a marked bradycardia. They exhibited a more pronounced tachycardia during breathing after 'forced' dives and hyperventilated during recovery dives. Manatees are capable of dives exceeding 10 min duration without having to resport to anaerobic metabolism, and even after 10 min dives recover within 3-4 short dives. The ability of manatees to make long dives, in spite of relatively poor O2 stores, is due to their low metabolic rate, while the rapid recovery is aided by their high CO2 stores which minimizes CO2 storage in the body. In manatees the changes in alveolar O2 and CO2 pressure (PAO2 and PACO2) in relation to dive time are slower and more variable than in other marine mammals. The lower rate of change is probably due to the manatees' reduced metabolic rate, while the greater variability is due to their breathing pattern, in which both ventilation and body gas stores influence alveolar gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号