首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about protists at deep‐sea hydrothermal vents. The vent sites at Guaymas Basin in the Gulf of California are characterized by dense mats of filamentous pigmented or nonpigmented Beggiatoa that serve as markers of subsurface thermochemical gradients. We constructed 18S rRNA libraries to investigate ciliate assemblages in Beggiatoa mats and from bare sediments at the Guaymas vent site. Results indicated a high diversity of ciliates, with 156 operational taxonomic units identified in 548 sequences. Comparison between mat environments demonstrated that ciliate and bacterial assemblages from pigmented mats, nonpigmented mats, and bare sediments were significantly different and highly correlated with bacterial assemblages. Neither bacterial nor ciliate assemblages were correlated with environmental factors. The most abundant ciliates at Guaymas were more likely to be represented in clone libraries from other hydrothermal, deep‐sea, and/or anoxic or microaerophilic environments, supporting the hypothesis that these ciliate species are broadly distributed. The orange mat environment included a higher proportion of ciliate sequences that were more similar to those from other environmental studies than to cultured ciliate species, whereas clone libraries from bare sediments included sequences that were the most highly divergent from all other sequences and may represent species that are endemic to Guaymas.  相似文献   

2.
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.  相似文献   

3.
Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200°C and pressures of 1 × 105, 2.2 × 107, and 4.5 × 107 Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95°C and 2.2 × 107 and 4.5 × 107 Pa. Maximal AOM was observed at 35 to 90°C but generally accounted for less than 5% of SR.  相似文献   

4.
The Guaymas Basin (Gulf of California; depth, 2,000 m) is a site of hydrothermal activity in which petroliferous material is formed by thermal alteration of deposited planktonic and terrestrial organic matter. We investigated certain components of these naturally occurring hydrocarbons as potential carbon sources for a specific microflora at these deep-sea vent sites. Respiratory conversion of [1-14C]hexadecane and [1(4,5,8)-14C]naphthalene to 14CO2 was observed at 4°C and 25°C, and some was observed at 55°C, but none was observed at 80°C. Bacterial isolates were capable of growing on both substrates as the sole carbon source. All isolates were aerobic and mesophilic with respect to growth on hydrocarbons but also grew at low temperatures (4 to 5°C). These results correlate well with previous geochemical analyses, indicating microbial hydrocarbon degradation, and show that at least some of the thermally produced hydrocarbons at Guaymas Basin are significant carbon sources to vent microbiota.  相似文献   

5.
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.  相似文献   

6.
Scanning electron microscope examinations have revealed fossilized cell-like structures randomly distributed in near-surface oxidized deposits of red and gray Fe-rich chert and Fe-Si oxyhydroxides of the Trans-Atlantic Geotraverse (TAG) hydrothermal mound, Mid-Atlantic Ridge at 26°08'N. Chemically, these structures are carbon-based with the morphology of half-spheroids that are 2 to 3 w m in diameter and are mostly arranged in the form of clusters and long thread-like cellular masses that resemble single-celled microorganisms. The wide range of intracrystalline silica concentration, which seems to replace the original chemistry, suggests that the microorganisms were subjected to various degrees of silica mineralization, which was probably controlled by the thermal development of this hydrothermal site.  相似文献   

7.
The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Methanosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus. Overall, the clone libraries indicate a diversified methanogen community that uses H2/CO2, formate, acetate, and methylated substrates. Phylogenetic affiliations of mcrA and 16S rRNA clones with thermophilic and nonthermophilic cultured isolates indicate a mixed mesophilic and thermophilic methanogen community in the surficial Guaymas sediments.  相似文献   

8.
The results of the first systematical investigation into the aerobic methanotrophic communities inhabiting the bottom sediments of Lake Baikal have been reported. Use of the radioisotopic method revealed methane consumption in 12 10- to 50-cm-long sediment cores. The maximum methane consumption rates (495–737 µl/(dm3 day) were recorded in sediments in the regions of hydrothermal vents and oil and gas occurrence. Methane consumption was most active in the surface layers of the sediments (0–4 cm); it decreased with the sediment depth and became negligible or absent at depths below 20 cm. The number of methanotrophic bacteria usually ranged from 100 to 1000 cells/cm3 of sediment and reached 1 million cells/cm3 in the regions of oil and gas occurrence. The seventeen enrichment cultures obtained were represented mainly by morphotype II methanotrophs. Phylogenetic analysis of the enrichment cultures in terms of the amino acid sequence of the α subunit of the membrane-bound methane monooxygenase (MMO) revealed the predominance of methanotrophs of the genus Methylocystis. The results obtained suggest the presence of an active aerobic methanotrophic community in Lake Baikal.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 562–571.Original Russian Text Copyright © 2005 by Gainutdinova, Eshinimaev, Tsyrenzhapova, Dagurova, Suzina, Khmelenina, Namsaraev, Trotsenko.  相似文献   

9.
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep‐sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high‐throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full‐length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.  相似文献   

10.
采用PCR-RFLP技术调查了劳盆地深海热液喷口两位点沉积物中的细菌多样性。结果表明, 在劳盆地深海热液喷口沉积物环境中细菌多样性十分丰富, 样品DY1中发现6个细菌类群, DY2中则存在4个细菌类群, 其中Gammaproteobacteria细菌亚群和Epsilonproteobacteria细菌亚群在两文库中均占据最大比例, 为沉积物样品中的优势菌群。另外, 在克隆文库中还发现了一些与数据库中的已知序列同源性较低的类群, 从而说明劳盆地深海热液喷口沉积物中存在特有的微生物种属。  相似文献   

11.
Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35°C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.  相似文献   

12.
Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The delta-(13)C values of these lipids (delta-(13)C = -89 to -58 per thousand) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.  相似文献   

13.
Aspects of Diversity Measurement for Microbial Communities   总被引:4,自引:3,他引:1       下载免费PDF全文
A useful measure of diversity was calculated for microbial communities collected from lake water and sediment samples using the Shannon index (H′) and rarefaction [E(S)]. Isolates were clustered by a numerical taxonomy approach in which limited (<20) tests were used so that the groups obtained represented a level of resolution other than species. The numerical value of diversity for each sample was affected by the number of tests used; however, the relative diversity compared among several sampling locations was the same whether 11 or 19 characters were examined. The number of isolates (i.e., sample size) strongly influenced the value of H′ so that unequal sized samples could not be compared. Rarefaction accounts for differences in sample size inherently so that such comparisons are made simple. Due to the type of sampling carried out by microbiologists, H′ is estimated and not determined and therefore requires a statement of error associated with it. Failure to report error provided potentially misleading results. Calculation of the variance of H′ is not a simple matter and may be impossible when handling a large number of samples. With rarefaction, the variance of E(S) is readily determined, facilitating the comparison of many samples.  相似文献   

14.
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes.  相似文献   

15.
Extremely thermophilic bacteria were isolated from sediments collected at the Guaymas Basin hydrothermal vent located in the Gulf of California. One isolate, (FC89) is a hydrogenotrophic methanogen with an optimal growth temperature of 85°C; this isolate appears to be closely related to the previously describedMethanococcus jannaschii. Thermophilic isolates TY and TYS are heterotrophic, sulfur-reducing archaea that differ from other thermophilic heterotrophic strains in physiological and molecular properties. Both heterotrophic isolates fermented carbohydrates and proteinaceous substrates; acetate was the primary product of carbohydrate fermentation, whereas acetate and a mix of organic acids were primary products of proteinaceous substrate fermentation. A detailed microbiological characterization of the isolates and a profile of fermentable substrates and fermentation products are described.  相似文献   

16.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

17.
The most recent publications on the phylogenetic and functional diversity of thermophilic prokaryotes inhabiting thermal deep-sea environments are reviewed. Along with a general physicochemical characterization of the biotope studied, certain adaptation mechanisms are discussed that are peculiar to the microorganisms inhabiting it. A separate chapter addresses the phylogenetic analysis of deep-sea hydrothermal microbial communities and uncultivated microorganisms recently discovered therein using molecular biological techniques. Physiological groups of thermophilic microorganisms found in deep-sea hydrothermal vents are considered: methanogens, sulfate-, iron-, and sulfur-reducers, aerobic hydrogen-oxidizing prokaryotes, aerobic and anaerobic organotrophs. In most cases, the isolates represent novel taxons.  相似文献   

18.
Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ13C signatures of CH4, dissolved inorganic carbon and porewater concentration profiles of CH4 and sulfate. Cool, warm and hot in-situ temperature regimes (15–20 °C, 30–35 °C and 70–95 °C) were selected from hydrothermal locations in Guaymas Basin to compare AOM geochemistry and 16S ribosomal RNA (rRNA), mcrA and dsrAB genes of the microbial communities. 16S rRNA gene clone libraries from the cool and hot AOM cores yielded similar archaeal types such as Miscellaneous Crenarchaeotal Group, Thermoproteales and anaerobic methane-oxidizing archaea (ANME)-1; some of the ANME-1 archaea formed a separate 16S rRNA lineage that at present seems to be limited to Guaymas Basin. Congruent results were obtained by mcrA gene analysis. The warm AOM core, chemically distinct by lower porewater sulfide concentrations, hosted a different archaeal community dominated by the two deep subsurface archaeal lineages Marine Benthic Group D and Marine Benthic Group B, and by members of the Methanosarcinales including ANME-2 archaea. This distinct composition of the methane-cycling archaeal community in the warm AOM core was confirmed by mcrA gene analysis. Functional genes of sulfate-reducing bacteria and archaea, dsrAB, showed more overlap between all cores, regardless of the core temperature. 16S rRNA gene clone libraries with Euryarchaeota-specific primers detected members of the Archaeoglobus clade in the cool and hot cores. A V6-tag high-throughput sequencing survey generally supported the clone library results while providing high-resolution detail on archaeal and bacterial community structure. These results indicate that AOM and the responsible archaeal communities persist over a wide temperature range.  相似文献   

19.
从湖北铜绿山铜矿和山西中条山铜矿两地采集了矿山废水样品, 用RFLP方法(限制性片段长度多态性方法)分析不同矿山废水中微生物多样性及其群落结构组成变化。结果发现:通过16S rDNA基因序列的系统发育树分析, 在5个矿山废水样品中检测到的细菌主要分为4大类:即Proteobacteria纲、Nitrospira纲、Firmicutes纲和Bacteroidetes纲。通过对古菌16S rDNA 的PCR分析发现, 取自湖北铜绿山铜矿的样品中检测到古菌的存在, 而取自山西中条山铜矿的样品中没有检测到古菌的存在。检测到的古菌主要是属于Ferroplasma属和Thermoplasma属。结合5个矿山废水样品的化学元素分析结果和细菌群落结构数据, 进行PCA分析(主成分分析), 发现不同矿山废水样品的生物地球化学性质及其微生物组成存在很大差异, pH值、温度、不同浓度的元素如S、Cu、Ni和Co可能是形成细菌种群结构差异的关键因素。  相似文献   

20.
Microbiology - Psychroactive enrichment cultures reducing anthraquinone 2,6-disulfonate (AQDS) and soluble complexes of ferric iron at 5–20°C were isolated from the samples of Lake...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号