首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A promising producer of extracellular amylases, Aspergillus flavipes, was selected from 245 strains of marine fungi. Depending on the conditions of growth, this strain produced diverse amylolytic complexes. When grown on a medium containing peptone and yeast extract (pH 7.0), A. flavipes synthesized three forms of amylase, differing in pH optimum (5.5, 6.0, and 7.5). A single form of the enzyme was synthesized either in the absence of peptone from the medium or at the initial pH value of the medium, equal to 8.6. The activity of the isolated amylase forms decreased in the presence of proteolytic enzymes. New, highly stable forms of amylase (with pH optima of 5.5 and 7.5 and maximum activity at 60–80°C) were synthesized in the presence of diisopropyl fluorophosphate, an inhibitor of proteases.  相似文献   

2.
A new moderately halophilic Micrococcus sp. 4, isolated from salt-pan water from India, produced extracellular amylase when cultivated aerobically in medium containing wheat bran, peptone, beef extract and sodium chloride. Other salts, such as sodium nitrate, potassium nitrate and sodium sulphate, were also found to be suitable for growth and enzyme production. Maximum amylase activity (1.2 IU ml-1) was secreted in the presence of 1 mol 1-1 sodium chloride. The enzyme requires the presence of either sodium chloride, potassium chloride, sodium nitrate, sodium citrate or sodium acetate for its activity. Maximum activity was found in the presence of 1 mol 1-1 sodium chloride. The pH and temperature optima for enzyme activity were 7.5 and 50°C, respectively.  相似文献   

3.
Production of extracellular amylase was demonstrated under stress conditions of high temperature and high salinity in aerobically cultivated culture of a newly isolated moderately halophilic bacterium of spore-forming Halobacillus sp. strain MA-2 in medium containing starch, peptone, beef extract, and NaCl. The maximum amylase production was secreted in the presence of 15% (w/v) Na(2)SO(4) (3.2 U ml(-1)). The isolate was capable of producing amylase in the presence of NaCl, NaCH(3)COOH, or KCl, with the results NaCl>NaCH(3)COOH>KCl. Maximum amylase activity was exhibited in the medium containing 5% (w/v) NaCl (2.4 U ml(-1)). Various carbon sources induced enzyme production. The potential of different carbohydrates in the amylase production was in the order: dextrin>starch>maltose>lactose>glucose>sucrose. In the presence of sodium arsenate (100 mM), maximum production of the enzyme was observed at 3.0 U ml(-1). Copper sulfate (0.1 mM) decreased the amylase production considerately, while lead nitrate had no significant enhancement on amylase production (p<0.05). The pH, temperature, and aeration optima for enzyme production were 7.8, 30 degrees C, and 200 rpm, respectively, while the optimum pH and temperature for enzyme activity was 7.5-8.5 and 50 degrees C, respectively.  相似文献   

4.
Production of α-amylase by Myxococcus coralloides D   总被引:3,自引:2,他引:1  
M.E. FÁREZ-VIDAL, A. FERNANDEZ-VIVAS AND J.M. ARIAS. 1992. Myxococcus coralloides D secreted amylase into a liquid growth medium containing 1% starch. Amylase activity was highest at the end of the exponential growth phase. Of the nitrogen sources tested, the greatest growth and amylase production were obtained with trypticase peptone, casitone, probion L and probion F. When starch was replaced by other carbon sources, amylase production was reduced; trisaccharide produced better results than disaccharide while monosaccharide reduced amylase production to basal levels. Maltose repressed amylase production. Amylase production was greater in stirred flasks, at pH between 6.5 and 7.5, and at temperatures from 28C to 33C. The activity of partially purified M. coralloides D amylase was used to determine the products released from the hydrolysis of starch with thin-layer chromatography, paper chromatography and nuclear magnetic resonance. These products were maltose and glucose and limit dextrins.  相似文献   

5.
Bacillus sp. A-001, which produced large amounts of amylase, was isolated from fermenting tef ( Eragrostis tef ) on tryptone soya agar supplemented with 1% starch. The organism grew between pH 4.5 and 10.5 with an optimum at 7–7.5. Growth occurred between 20 and 55°C but the optimum was about 35–40°C. At optimum medium pH (7.5) and a temperature of 35°C the organism entered the stationary phase after about 72 h and amylase production was at its highest (9.6 units ml-1) at this time. Enzyme activity was optimal at pH 5.5 and 40°C and showed good thermal stability; it required 110 min to lose 50% of its activity at 70°C. The enzyme hydrolysed native starch (flour from tef, corn and kocho) to various oligosaccharides, including maltotriose, maltose and glucose.  相似文献   

6.
A highly thermostable alkaline amylase producing Bacillus sp. PN5 was isolated from soil, which yielded 65.23 U mL(-1) of amylase in medium containing (%) 0.6 starch, 0.5 peptone and 0.3 yeast extract at 60 degrees C, pH 7.0 after 60 h of incubation. Maximum amylase activity was at pH 10.0 and 90 degrees C. The enzyme retained 80% activity after 1 h at pH 10.0. It exhibited 65% activity at 105 degrees C and had 100% stability in the temperature range between 80 and 100 degrees C for 1 h. In addition, there was 86.36% stability after 1-h incubation with sodium dodecylsulphate. These properties indicated possible use of this amylase in starch saccharification and detergent formulation.  相似文献   

7.
从土壤中筛选获得一株具有转糖基活性的β-半乳糖苷酶产生菌,综合其形态学特征、生理生化特征及16S rDNA序列同源分析结果,将其鉴定为成团肠杆菌(Enterobacter agglomerans)B1.通过单因子试验和正交试验,对B1菌株产转糖基β-半乳糖苷酶的培养条件进行了优化.最佳培养基主要组份为:乳糖1%,酵母粉1%,蛋白胨0.5%;发酵条件为:初始pH7.5,发酵温度25℃,发酵时间26 h.在该培养条件下产酶量为9.7U/mL.利用薄层层析技术研究了pH、温度、底物浓度和反应时间对该菌株全细胞以乳糖为底物生成低聚半乳糖的影响,确定最适反应条件为:pH7.5缓冲液配制的30%乳糖溶液;50℃反应12h.最优化反应的转糖基产物经HPLC、TLC和MS分析,确定低聚半乳糖产量为40.7%,组分为转移二糖、三糖和四糖.  相似文献   

8.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

9.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

10.
A bacterium that secretes maltooligosaccharide-forming amylase in a medium containing 12.5% (vol/vol) dimethylsulfoxide (DMSO) was isolated and identified as Brachybacterium sp. strain LB25. The amylase of the strain was purified from the culture supernatant, and its molecular mass was 60 kDa. The enzyme was stable at pH 7.0–8.5 and active at pH 6.0–7.5. The optimum temperature at pH 7.0 was 35°C in the presence of 5 mM CaCl2. The enzyme hydrolyzed starch to produce maltotriose primarily. The enzyme was active in the presence of various organic solvents. Its yield and product selectivity of maltooligosaccharides in the presence of DMSO or ethanol were compared with those of the industrial maltotriose-forming amylase from Microbacterium imperiale. Both enzymes improved the production selectivity of maltotriose by the addition of DMSO or ethanol. However, the total maltooligosaccharide yield in the presence of the solvents was higher for LB25 amylase than for M. imperiale amylase.  相似文献   

11.
Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl(2), and MgSO(4). The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO(4): 0.2 and CaCl(2): 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.  相似文献   

12.
Six-day incubation was most suitable for production of pectolytic and cellulolytic enzymes byFusarium on different culture media. Czapek’s medium favoured maximum production of polygalacturonase (PG) and cellulase (Cx), peptone dextrose gave highest yields of pectin methyl galacturonase (PMG) withF. oxysporum. Cole’s medium was found to be poor for the enzyme production by both organisms. A positive correlation was observed between the growth rate of the pathogenic forms and their enzyme production. InF. oxysporum the PG secretion was maximum at pH 4.5 and inF. moniliforme at pH 5.0. PMG production optimum was at pH 5.5. No PG and PMG were produced above pH 7. InF. oxysporum the Cx activity was highest at pH 5.5 and inF. moniliforme at pH 4.5. Maximum PG and PMG activities were recorded at 35 °C in both pathogens. The Cx activity of both organisms was maximum at 45 °C but some carboxymethyl cellulose hydrolysis was found even at 60 °C.  相似文献   

13.
A gene encoding an O-acetyl-L-serine sulfhydrylase (cysK) was cloned from Lactobacillus casei FAM18110 and expressed in Escherichia coli. The purified recombinant enzyme synthesized cysteine from sulfide and O-acetyl-L-serine at pH 5.5 and pH 7.4. At pH 7.4, the apparent K(M) for O-acetyl-L-serine (OAS) and sulfide were 0.6 and 6.7 mM, respectively. Furthermore, the enzyme showed cysteine desulfurization activity in the presence of dithiothreitol at pH 7.5, but not at pH 5.5. The apparent K(M) for L-cysteine was 0.7 mM. The synthesis of cystathionine from homocysteine and serine or OAS was not observed. When expressed in a cysMK mutant of Escherichia coli, the cloned gene complemented the cysteine auxotrophy of the mutant. These findings suggested that the gene product is mainly involved in cysteine biosynthesis in L. casei. Quantitative real-time PCR and a mass spectrometric assay based on selected reaction monitoring demonstrated that L. casei FAM18110 is constitutively overexpressing cysK.  相似文献   

14.
Bacillus stearothermophilus grew better on complex and semisynthetic medium than on synthetic medium supplemented with amino acids. Amylase production on the complex medium containing beef extract or corn steep liquor was higher than on semisynthetic medium containing peptone (0.4%). The synthetic medium, however, did not provide a good yield of extracellular amylase. Among the carbohydrates which favored the production of amylase are, in order starch > dextrin > glycogen > cellobiose > maltohexaose-maltopeptaose > maltotetraose and maltotriose. The monosaccharides repressed the enzyme production, whereas inositol and d-sorbitol favored amylase production. Organic and inorganic salts increased amylase production in the order of KCI > sodium malate > potassium succinate, while the yield was comparatively lower with other organic salts of Na and K. Amino acids, in particular isoleucine, cysteine, phenylalanine, and aspartic acids, were found to be vital for amylase synthesis. Medium containing CaCl(2) 2H(2)O enhanced amylase production over that on Ca -deficient medium. The detergents Tween-80 and Triton X-100 increased biomass but significantly suppressed amylase synthesis. The amylase powder obtained from the culture filtrate by prechilled acetone treatment was stable over a wide pH range and liquefied thick starch slurries at 80 degrees C. The crude amylase, after (NH(4))(2)SO(4) fractionation, had an activity of 210.6 U mg. The optimum temperature and pH of the enzyme were found to be 82 degrees C and 6.9, respectively. Ca was required for the thermostability of the enzyme preparation.  相似文献   

15.
A strain of Rhizopus stolonifer produced a high activity of extracellular DNAase when grown on YPG (yeast extract peptone glucose) medium. The source of peptone had a marked effect on the enzyme yield and only one peptone (i.e. from Sarabhai M. Chemicals Ltd, India) supported enzyme production. Maximum enzyme activity (88 U/ml) was obtained after 4 days' growth under submerged conditions in YPG medium containing 100 M Mn2+, Co2+ or Mg2+, and glucose as the sole carbon source. The unpurified enzyme was optimally active at pH 7.5 and 45°C. It had a higher activity with sonicated and heat-denatured DNA than native DNA.  相似文献   

16.
An extracellular protease was produced under stress conditions of high temperature and high salinity by a newly isolated moderate halophile, Salinivibrio sp. strain AF-2004 in a basal medium containing peptone, beef extract, glucose and NaCl. A modification of Kunitz method was used for protease assay. The isolate was capable of producing protease in the presence of sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, potassium chloride, sodium acetate and sodium citrate. The maximum protease was secreted in the presence of 7.5 to 10% (w/v) sodium sulfate or 3% (w/v) sodium acetate (4.6 U ml−1). Various carbon sources including glucose, lactose, casein and peptone were capable of inducing enzyme production. The optimum pH, temperature and aeration for enzyme production were 9.0, 32 °C and 220 rpm, respectively. The enzyme production corresponded with growth and reached a maximum level during the mid-stationary phase. Maximum protease activity was exhibited in the medium containing 1% (w/v) NaCl at 60 °C, with 18% and 41% activity reductions at temperature 50 and 70 °C, respectively. The optimum pH for enzyme activity was 8.5, with 86% and 75% residual activities at pH 10 and 6, respectively. The activity of enzyme was inhibited by EDTA. These results suggest that the protease secreted by Salinivibrio sp. strain AF-2004 is industrially important from the perspectives of its activity at a broad pH ranges (5.0–10.0), its moderate thermoactivity in addition to its high tolerance to a wide range of salt concentration (0–10% NaCl).  相似文献   

17.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

18.
An extracellular halophilic α-amylase was purified from Nesterenkonia sp. strain F using 80 % ethanol precipitation and Q-Sepharose anion exchange chromatography. The enzyme showed a single band with an apparent molecular weight of 110 kDa by SDS-PAGE. The amylase exhibited maximal activity at pH 7-7.5, being relatively stable at pH 6.5-7.5. Optimal temperature for the amylase activity and stability was 45 °C. The purified enzyme was highly active in the broad range of NaCl concentrations (0-4 M) with optimal activity at 0.25 M NaCl. The amylase was highly stable in the presence of 3-4 M NaCl. Amylase activity was not influenced by Ca2?, Rb?, Li?, Cs?, Mg2? and Hg2?, whereas Fe3?, Cu2?, Zn2? and Al3?) strongly inhibited the enzyme activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. K(m) value of the amylase for soluble starch was 6.6 mg/ml. Amylolytic activity of the enzyme was enhanced not only by 20 % of water-immiscible organic solvents but also by acetone, ethanol and chloroform. Higher concentration (50 %) of the water-miscible organic solvents had no significant effect on the amylase activity. To the best of our knowledge, this is the first report on increased activity of a microbial α-amylase in the presence of organic solvents.  相似文献   

19.
为降低烟叶中的淀粉含量,提高烟叶的可用性,从云南马龙C3F-2014烟叶表面筛选出一株高产淀粉酶的细菌,经16sRNA测序鉴定为 Bacillus koreensis 。本研究利用响应面法优化 Bacillus koreensis 的培养基提高了其表达淀粉酶的产量。首先,单因素优化试验表明培养基的最优碳源、氮源和金属离子分别为淀粉、蛋白胨和Ca2+,培养条件单因素试验表明 Bacillus koreensis 最适初始pH、最适温度和最适接种量分别为pH8.0、37 ℃和3%。利用Box-Behnken中心组合设计对可溶性淀粉、蛋白胨、Ca2+设计三因素三水平实验,通过响应面回归分析,得到模型预测的最优培养基条件。在18.74 g/L可溶性淀粉,21.56 g/L蛋白胨,0.52 g/L CaCl2的培养基条件下 Bacillus koreensis 产淀粉酶最高。验证试验得到的淀粉酶活力达到959.39±22.34 U/mL,与模型的预测值相近,比未优化前提高了69.76%。本研究结果为烟草天然源淀粉酶处理烟叶,提高烟叶品质的工业化应用提供了基础。  相似文献   

20.
The effects of culture conditions and competitive cultivation with bacteria on mycelial growth, metabolite profile, and antibacterial activity of the marine-derived fungus Arthrinium c.f. saccharicola were investigated. The fungus grew faster at 30°C, at pH 6.5 and in freshwater medium, while exhibited higher antibacterial activity at 25°C, at pH 4.5, 5.5, and 7.5, and in 34 ppt seawater medium. The fungus grew faster in a high-nitrogen medium that contained 0.5% peptone and/or 0.5% yeast extract, while exhibiting higher bioactivity in a high-carbon medium that contained 2% glucose. The fungal growth was inhibited when it was co-cultured with six bacterial species, particularly the bacterium Pseudoalteromonas piscida. The addition of a cell free culture broth of this bacterium significantly increased the bioactivity of the fungus. Metabolite profiles of the fungus revealed by gas chromatography (GC)-mass spectrometry showed clear difference among different treatments, and the change of relative area of three peaks in GC profile followed a similar trend with the bioactivity variation of fungal extracts. Our results showed clear differences in the optimal conditions for achieving maximal mycelial growth and bioactivity of the fungus, which is important for the further study on the mass cultivation and bioactive compounds isolation from this fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号