首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have characterized the nucleotide sequences of the 70-kDa heat shock protein (HSP70) genes of Cryptosporidium baileyi, C. felis, C. meleagridis, C. muris, C. serpentis, C. wrairi, and C. parvum from various animals. Results of the phylogenetic analysis revealed the presence of several genetically distinct species in the genus Cryptosporidium and eight distinct genotypes within the species C. parvum. Some of the latter may represent cryptic species. The phylogenetic tree constructed from these sequences is in agreement with our previous results based on the small-subunit rRNA genes of Cryptosporidium parasites. The Cryptosporidium species formed two major clades: isolates of C. muris and C. serpentis formed the first major group, while isolates of C. felis, C. meleagridis, C. wrairi, and eight genotypes of C. parvum formed the second major group. Sequence variations were also observed between C. muris isolates from ruminants and rodents. The HSP70 gene provides another useful locus for phylogenetic analysis of the genus Cryptosporidium.  相似文献   

2.
To further validate previous observations in the taxonomy of Cryptosporidium parasites, the phylogenetic relationship was analyzed among various Cryptosporidium parasites at the actin locus. Nucleotide sequences of the actin gene were obtained from 9 putative Cryptosporidium species (C. parvum, C. andersoni, C. baileyi, C. felis, C. meleagridis, C. muris, C. saurophilum, C. serpentis, and C. wrairi) and various C. parvum genotypes. After multiple alignment of the obtained actin sequences, genetic distances were measured, and phylogenetic trees were constructed. Results of the analysis confirmed the presence of genetically distinct species within Cryptosporidium and various distinct genotypes within C. parvum. The phylogenetic tree constructed on the basis of the actin sequences was largely in agreement with previous results based on small subunit rRNA, 70-kDa heat shock protein, and Cryptosporidium oocyst wall protein genes. The Cryptosporidium species formed 2 major clades; isolates of C. andersoni, C. muris, and C. serpentis formed the first major group, whereas isolates of all other species, as well as various C. parvum genotypes, formed the second major group. Intragenotype variations were low or absent at this locus.  相似文献   

3.
H Zhu  J Zhao  R Wang  L Zhang 《PloS one》2012,7(8):e43682
Two Cryptosporidium isolates from separate infants suffering from diarrhea were obtained from a hospital in Zhengzhou, China and were genotyped by PCR amplification and sequence analysis of the small-subunit ribosomal RNA (rRNA) (SSU rRNA), 70-kDa heat shock protein (HSP70), and actin genes. Further subtyping was performed by PCR amplification and sequence analysis of the 60-kDa glycoprotein (gp60) gene. Both the isolates were identified as Cryptosporidium hominis subtype IdA21, a rare subtype previously found only in a human immunodeficiency virus-infected child in South Africa and another child in Jordan.  相似文献   

4.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

5.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   

6.
A polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of a 587-bp region of the Cryptosporidium parvum 70-kDa heat shock protein (HSP70) gene was developed for the detection and discrimination of the two major genotypes of C. parvum, genotype 1 and genotype 2. Ten Cryptosporidium isolates from non-immunocompromised people were identified as genotypes 1 and 2 (five each) by DNA sequencing of the 587-bp PCR product. This distinction was also achieved with the combination of two endonucleases, HinfI and ScaI, which generated a specific pattern for each genotype. A thorough screening of published sequences showed that this combination of enzymes could also be used for the discrimination of other species/genotypes of Cryptosporidium, especially Cryptosporidium meleagridis and the 'dog' genotype of C. parvum, both of which are infectious in humans. The PCR, conducted on genotypes 1 and 2 of C. parvum, could detect one oocyst per reaction. This new and sensitive genotyping procedure should be of particular interest when applied to the monitoring of water resources in which low concentrations of parasites usually occur.  相似文献   

7.
Molecular and phylogenetic characterisation of Cryptosporidium from birds   总被引:4,自引:0,他引:4  
Avian isolates of Cryptosporidium species from different geographic locations were sequenced at two loci, the 18S rRNA gene and the heat shock gene (HSP-70). Phylogenetic analysis of the sequence data provided support for the existence of a new avian species of Cryptosporidium infecting finches and a second species infecting a black duck. The identity of Cryptosporidium baileyi and Cryptosporidium meleagridis as valid species was confirmed. Also, C. baileyi was identified in a number of isolates from the brown quail extending the host range of this species.  相似文献   

8.
ABSTRACT: The performance of 10 commonly used genotyping tools in the detection and differentiation of 7 human-pathogenic Cryptosporidium spp. ( C. hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. muris and Cryptosporidium pig genotype I) was evaluated. All 3 SU rRNA gene-based tools could amplify the DNA of 7 Cryptosporidium spp. efficiently. However, the tools based on the antigens TRAP-C1, TRAP-C2 and COWP genes, the housekeeping genes HSP70 and DHFR, or a genomic sequence, failed to detect the DNA of C. felis, C. canis, Cryptosporidium pig genotype I, and C. metris. With the exception of 1 tool based on the TRAP-C2 gene, the PCR-RFLP or the PCR sequencing tools evaluated in this study could differentiate C. hominis, C. parvum and C. meleagridis from each other, and 2 SSU rRNA genebased tools could differentiate all 7 Cryptosporidium spp. Thus, a thorough understanding of the strength and weakness of each technique is needed when using molecular diagnostic tool in epidemiological investigations of human cryptosporidiosis.  相似文献   

9.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

10.
Several species of Cryptosporidium have been associated with infection. Cryptosporidium parvum and Cryptosporidium hominis are the main agents of cryptosporidiosis in humans. Stool samples from 108 Cryptosporidium-infected patients were submitted to PCR-RFLP analysis for a 553-bp fragment of Cryptosporidium oocyst wall protein (COWP) gene and an 826-864 bp fragment of the small-subunit ribosomal RNA (SSU-rRNA) gene. Ninety-two patients were immunocompetent children and 16 were HIV-infected adults. C. hominis was detected in 69 patients (59 immunocompetent and 10 HIV-infected); C. parvum, in 34 patients (28 immunocompetent and 6 HIV-infected); and C. meleagridis and C. felis in one patient each (both immunocompetent children). Three samples yielded negative results. C. parvum was significantly more frequent in children from rural areas than in those of urban residence (p=0.010). As far as we know, this is the first surveillance study about the molecular characterization of Cryptosporidium in humans performed in Spain. The finding of zoonotic species infecting humans calls for further research on this subject.  相似文献   

11.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

12.
We describe the discovery of polymorphisms in the Cryptosporidium oocyst wall protein (COWP) gene conferring a novel restriction fragment length polymorphism (RFLP) pattern in 26/60 (43%) isolates from a flock of sheep sampled following a waterborne outbreak of human cryptosporidiosis. The sheep isolates showed identical PCR-RFLP patterns to each other by COWP genotyping but different from those of most currently recognised genotypes, including the major Cryptosporidium parvum genotypes 1 and 2. Sequence analysis of the 550bp amplicon from the COWP gene was compared with a DNA coding region employed in previous studies and showed the novel isolate to differ from other Cryptosporidium species and C. parvum isolates by 7-21%. The sheep-derived isolates were compared at this and further three Cryptosporidium gene loci with isolates from other farmed animals. The loci employed were one in the thrombospondin related adhesive protein (TRAP-C2) gene and two in the 70kDa heat shock protein (HSP70) gene (CPHSP1 and 2). Other animal samples tested in our laboratory were from clinically ill animals and all contained C. parvum genotype 2. The sheep in which the novel isolate was identified were healthy and showed no symptoms of cryptosporidiosis, and the novel sheep isolate could represent a non-pathogenic strain. Our studies suggest that a previously undetected Cryptosporidium sub-type may exist in sheep populations, reflecting the increasingly recognised diversity within the parasite genus.  相似文献   

13.
This study was undertaken in order to characterize a Cryptosporidium muris-like parasite isolated from cattle in Hungary and to compare this strain with other Cryptosporidium species. To date, the large-type oocysts isolated from cattle were considered as C. muris described from several mammals. The size, form, and structure of the oocysts of the Hungarian strain were identical with those described by others from cattle. An apparent difference between the morphometric data of C. muris-like parasites isolated from cattle or other mammals was noted, which is similar in magnitude to the differences between Cryptosporidium meleagridis and Cryptosporidium felis or between Cryptosporidium serpentis and Cryptosporidium baileyi. The cross-transmission experiments confirmed the findings of others, as C. muris-like oocysts isolated from cattle fail to infect other mammals. The sequence of the variable region of small subunit (SSU) rRNA gene of the strain was 100% identical with that of the U.S. Cryptosporidium andersoni and C. andersoni-like isolates from cattle. The difference between the SSU rRNA sequence of bovine strains and C. muris is similar in magnitude to the differences between C. meleagridis and Cryptosporidium parvum anthroponotic genotype or between Cryptosporidium wrairi and C. parvum zoonotic genotype. Our findings confirm that the Cryptosporidium species responsible for abomasal cryptosporidiosis and economic losses in the cattle industry should be considered a distinct species, C. andersoni Lindsay, Upton, Owens, Morgan, Mead, and Blagburn, 2000.  相似文献   

14.
We have characterized the nucleotide sequences of the 70-kDa heat shock protein (HSP70) genes of Cryptosporidium baileyi, C. felis, C. meleagridis, C. muris, C. serpentis, C. wrairi, and C. parvum from various animals. Results of the phylogenetic analysis revealed the presence of several genetically distinct species in the genus Cryptosporidium and eight distinct genotypes within the species C. parvum. Some of the latter may represent cryptic species. The phylogenetic tree constructed from these sequences is in agreement with our previous results based on the small-subunit rRNA genes of Cryptosporidium parasites. The Cryptosporidium species formed two major clades: isolates of C. muris and C. serpentis formed the first major group, while isolates of C. felis, C. meleagridis, C. wrairi, and eight genotypes of C. parvum formed the second major group. Sequence variations were also observed between C. muris isolates from ruminants and rodents. The HSP70 gene provides another useful locus for phylogenetic analysis of the genus Cryptosporidium.  相似文献   

15.
Two species of Cryptosporidium are known to infect man; C. hominis which shows anthroponotic transmission between humans, and C. parvum which shows zoonotic transmission between animals or between animals and man. In this study, we focused on identifying genotypes of Cryptosporidium prevalent among inhabitants and domestic animals (cattle and goats), to elucidate transmittal routes in a known endemic area in Hwasun-gun, Jeollanam-do, Republic of Korea. The existence of Cryptosporidium oocysts was confirmed using a modified Ziehl-Neelsen stain. Human infections were found in 7 (25.9%) of 27 people examined. Cattle cryptosporidiosis cases constituted 7 (41.2%) of 17 examined, and goat cases 3 (42.9%) of 7 examined. Species characterizations were performed on the small subunit of the rRNA gene using both PCR-RFLP and sequence analysis. Most of the human isolates were mixtures of C. hominis and C. parvum genotypes and similar PCR-RFLP patterns were observed in cattle and goat isolates. However, sequence analyses identified only C. hominis in all isolates examined. The natural infection of cattle and goats with C. hominis is a new and unique finding in the present study. It is suggested that human cryptosporidiosis in the studied area is caused by mixtures of C. hominis and C. parvum oocysts originating from both inhabitants and domestic animals.  相似文献   

16.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

17.
Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes.  相似文献   

18.
To provide information on the transmission dynamics of cryptosporidial infections in domestic small ruminants and the potential role of sheep and goats as a source for human cryptosporidiosis, Cryptosporidium-positive isolates from 137 diarrheic lambs and 17 goat kids younger than 21 days of age were examined by using genotyping and subtyping techniques. Fecal specimens were collected between 2004 and 2006 from 71 sheep and 7 goat farms distributed throughout Aragón (northeastern Spain). Cryptosporidium parvum was the only species identified by restriction analyses of PCR products from small-subunit rRNA genes from all 154 microscopy-positive isolates and the sequencing of a subset of 50 isolates. Sequence analyses of the glycoprotein (GP60) gene revealed extensive genetic diversity within the C. parvum strains in a limited geographical area, in which the isolates from lambs exhibited 11 subtypes in two subtype families (IId and IIa) and those from goat kids displayed four subtypes within the family IId. Most isolates (98%) belonged to the subtype family IId, whereas only three isolates belonged to the most widely distributed family, IIa. Three of the four most prevalent subtypes (IIdA17G1a, IIdA19G1, and IIdA18G1) were previously identified in humans, and five subtypes (IIdA14G1, IIdA15G1, IIdA24G1, IIdA25G1, and IIdA26G1) were novel subtypes. All IId subtypes were identical to each other in the nonrepeat region, except for subtypes IIdA17G1b and IIdA22G1, which differed by a single nucleotide polymorphism downstream of the trinucleotide repeats. These findings suggest that lambs and goat kids are an important reservoir of the zoonotic C. parvum subtype family IId for humans.  相似文献   

19.
An unusual genotype of Cryptosporidium was identified in the faeces of six human patients by PCR/RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene. Conventional microscopy showed oocysts indistinguishable in size from those of Cryptosporidium parvum, which reacted with two different commercially available anti-oocyst monoclonal antibodies. The isolates were further characterised by PCR/RFLP analysis of the thrombospondin-related adhesive protein of Cryptosporidium-1 (TRAP-C1) genes as well as by DNA sequencing of the COWP and the TRAP-C1 gene fragments and of two regions of the 18S rRNA gene. Sequence analysis of the COWP, TRAP-C1, and 18S rRNA gene fragments confirmed that this genotype is genetically distinct from C. parvum. 18S rRNA gene sequences were found to be identical to those published for Cryptosporidium meleagridis.  相似文献   

20.
Cryptosporidium is a gastrointestinal parasite that is recognised as a significant cause of non-viral diarrhea in both developing and industrialised countries. In the present study, a longitudinal analysis of 248 faecal specimens from Australian humans with gastrointestinal symptoms from 2005 to 2008 was conducted. Sequence analysis of the 18S rRNA gene locus and the 60 kDa glycoprotein (gp60) gene locus revealed that 195 (78.6%) of the cases were due to infection with Cryptosporidium hominis, 49 (19.8%) with Cryptosporidium parvum and four (1.6%) with Cryptosporidium meleagridis. A total of eight gp60 subtype families were identified; five C. hominis subtype families (Ib, Id, Ie, If and Ig), and two C. parvum subtype families (IIa and IId). The Id subtype family was the most common C. hominis subtype family identified in 45.7% of isolates, followed by the Ig subtype family (30.3%) and the Ib subtype family (20%). The most common C. parvum subtype was IIaA18G3R1, identified in 65.3% of isolates. The more rare zoonotic IId A15G1 subtype was identified in one isolate. Statistical analysis showed that the Id subtype was associated with abdominal pain (p < 0.05) and that in sporadic cryptosporidiosis, children aged 5 and below were 1.91 times and 1.88 times more likely to be infected with subtype Id (RR 1.91; 95% CI, 1.7-2.89; p < 0.05) and Ig (RR 1.88; 95% CI, 1.10-3.24; p < 0.05) compared to children aged 5 and above. A subset of isolates were also analysed at the variable CP47 and MSC6-7 gene loci. Findings from this study suggest that anthroponotic transmission of Cryptosporidium plays a major role in the epidemiology of cryptosporidiosis in Western Australian humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号