首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thermophilic degradation of sugar beet pulp was studied in batch cultures at 55°C by different associations of bacteria, includingClostridium thermocellum,Methanobacterium sp. andMethanosarcina MP.C. thermocellum produced acetate, succinate, methanol, ethanol, H2 and CO2. The coculture ofC. thermocellum andMethanobacterium sp. produced trace amounts of ethanol and succinate; acetate concentration was about three times higher than in theC. thermocellum monoculture. The association of this coculture withMethanosarcina MP produced 5.5 mmol CH4/g dry weight sugar beet pulp.  相似文献   

2.
Summary Two strains of Z. mobilis were evaluated for temperature sensitivity between 25°C and 40°C. At higher temperatures the cell viability, biomass yield, ethanol yield and final ethanol concentration decreased, and there was evidence of increased ethanol inhibition. However the kinetic parameters , qs and qp were largely unaffected by temperature over this range.  相似文献   

3.
Summary The metabolite pattern of batch cultures ofLactobacillus casei LMG 6400,Clostridium butyricum LMG 1213t1 andEscherichia coli LMG 2093 was effected only for the latter organism when the H2 partial pressure was below 1 atmosphere: high hydrogen partial pressures increased the formate formation, low pressures gave rise to increased acetate production and higher cell yields.  相似文献   

4.
B and Pl are two genes involved in anthocyanin biosynthesis in maize (Zea mays) plant tissues. In this work the effect of B and Pl on pigment accumulation is analyzed in endosperm tissues, either cultured in vitro or scraped off from the seed. The results obtained indicate that the two genes play a different role in callus pigmentation: B exerts a qualitative change in pigment composition, while Pl controls the rate of pigment accumulation in the callus. Anthocyanin synthesis in all strains analyzed appears to be light independent. Two cases of instability in pigment production arisen in the endosperm cultures are described and discussed in relation to epigenetic variation in secondary metabolite content in plant tissue culture.Abbreviations BEAF Benzene/ethyl acetate/formic acid (40:10:5) - 2-4D 2,4-dichlorophenoxyacetic acid - Wi initial weight - Wt total weight  相似文献   

5.
Summary Evidence for the presence of extrachromosomal elements inLactobacillus helveticus ATCC 15009 and the absence of plasmid DNA in two other strains ofL. helveticus is reported. These three strains did not show any difference in regard to lactose metabolism, proteolytic activity, and antibiotic resistance or in N-acetyl-D-glucosamine fermentation. The only difference found is a higher resistance to arsenate forL. helveticus ATCC 15009, suggesting linkage of this resistance to plasmids present in this strain.  相似文献   

6.
The autecology and ecophysiology of two selected periphytic species of Xanthophyceae (Tribonema fonticolum and T. monochloron) were studied from seasonal pools of the inundation area, in the upper part of the Lužnice River (Třeboňsko Biosphere Reserve, Czech Republic) during winter–spring flood. Our studies have shown that these species differ in their ecological requirements (their temperature and light optima; inorganic carbon sources for photosynthesis; and also their ability to survive freezing and desiccation injuries). In our experiments, the optimal growth temperatures for both strains were higher than the temperatures of the water they were collected and isolated from. Tribonema monochloron has the rate of photosynthesis several times higher than T. fonticolum. In addition, the optimal growth temperatures were about 3–4°C lower for Tribonema monochloron than for T. fonticolum. From our results, we concluded that both strains of Tribonema prefer low intensities of irradiance. Both Tribonema strains were determined as CO2 users, but we revealed the ability of T. fonticolum to use HCO3 in small amounts. In both Tribonema strains, 100% of the cells survived freezing down to −4°C. The cells’ viability after freezing at −40, −100 and −196°C was much higher for T. monochloron (about 40%) than for T. fonticolum (about 4%). With respect to desiccation damages, at temperatures of +4 and +20°C, T. monochloron (the species better adapted to low temperatures) did not survive. In contrast, about 80% cells of T. fonticolum survived desiccation at both temperatures. Handling editor: J. Padisak.  相似文献   

7.
Beth Szyszka 《BBA》2007,1767(6):789-800
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 °C and 28 °C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (ΦNPQ) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (ΦNO). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

8.
Behavior, growth, and production are integral in the life history of Karenia brevis, an autotrophic, dinoflagellate HAB species, and are important variables in modeling blooms in the Gulf of Mexico. This study compares swimming speeds, growth rates, and photosynthetic responses of recent isolates of K. brevis (specifically the Apalachicola – APA, Manasota – MAN, and Jacksonville – JAX strains) over a range of light intensities and temperatures. Strain swimming speeds were similar and remained fairly constant from 17 to 30 °C, but decreased markedly at 13 °C. Photosynthetic responses of the strains to different acclimated temperatures had opposite trends with APA exhibiting higher electron transport rates (ETR) at higher temperatures and MAN exhibiting higher ETR at lower temperatures. In the light experiments, the cells’ internal physiological state (represented by photosynthetic yield, ETR, and neutral lipid reserves) and swimming capabilities were examined in the dark after 6 h incubations in the radial photosynthetron. For all strains, at initial incubation light intensities swimming speed decreased and ETR increased. As incubation light intensities increased, ETR decreased and swimming speed increased. At the highest incubation light intensities, ETR and swimming speed decreased. Neutral lipids followed a pattern similar to ETR, only lipids peaked after ETR at a light intensity that corresponded to the increase in swimming speed. The results suggest that cells may partition energy selectively depending on the needs of the cell. Information was combined to characterize a generalized species response to light and temperature ranges.  相似文献   

9.
Brix H 《Plant physiology》1968,43(3):389-393
The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6°, 20°, 28°) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities.  相似文献   

10.
Rhodopseudomonas palustris, a purple non-sulfur bacterium, was recently found throughout the water column in Lake Kinneret. It was demonstrated to be of a versatile nature, growing under both aerobic and anaerobic conditions at different light intensities. A comparison of C-acetate uptake byR. palustris andChlorobium phaeobacterioides, a green sulfur bacterium, showed that, under identical growth conditions, C-acetate assimilation byR. palustris was greater. Furthermore, C-acetate uptake forR. palustris was greater than C−CO2 uptake at all light intensities. Depending on the prevailing conditions, acetate can be used byR. palustris as both an electron donor and carbon source. Malate synthase was used as an indicator of activity of the glyoxylic acid cycle. It was found that enzyme activity was higher (i.e., acetate was used mainly as a carbon source) under anaerobic conditions, in the dark, or in the absence of HCO 3 . Acetate was used preferably as an electron donor under photosynthetic microaerophillic conditions.  相似文献   

11.
Sugarcane leaves respired in full light and the CO2 evolved could be detected in sorghum or miaze photosynthesizing in the same closed system. A combination of radiometric and infra-red gas analysis techniques allowed the estimation of photorespiration (total CO2 evolution in light) and photosynthesis at increasing light intensities and of dark respiration. Rates of CO2 evolution approaching those of temperate zone plants occurred at lower light intensities but rapidly decreased with higher light. Smaller but significant quantities of 14CO2 were released even at intensities approximating full sunlight in leaves of maize, sorghum and sugarcane. Highly efficient CO2 capture may explain the low rates of photorespiration at high light intensities.  相似文献   

12.
Summary A total of 55 yeast strains selected from 7 genera known to ferment carbohydrates to ethanol were screened for their ability to ferment glucose to ethanol in shaken flask culture at 37°, 40° and 45°C. Yields of more than 50% of the theoretical maximum were obtained with 28 strains at 37°C, but only 12 at 40°C. Only 6 could grow at 45°C, but they produced poor yields. In general Kluyveromyces strains were more thermotolerant than Saccharomyces and Candida strains, but Saccharomyces strains produced higher ethanol yields. The 8 strains with the highest yields at 40°C were evaluated in batch fermentations. Three of these, two Saccharomyces and one Candida, were able to meet minimum commercial targets set at 8% (v/v) ethanol from 14% (w/v) glucose at 40°C.  相似文献   

13.
Summary The fermentation of glucose byClostridium thermosaccharolyticum strains IMG 2811T, 6544 and 6564 was studied in batch culture in a complex medium at different temperatures in defined and free-floating pH conditions. All the strains ferment 5 g glucose.l–1 completely. The yield of the fermentation products turned out to be independent of the incubation temperature for strain IMG 2811T. Strain IMG 6544 produced at 60°C significantly more ethanol and less acetic acid, butyric acid, hydrogen gas and biomass than at lower temperatures. With strain IMG 6564, the opposite effect occurred: ethanol appeared to be the main fermentation product at 45°C; at 60°C less ethanol and more acetic acid, butyric acid and hydrogen gas was formed.Experiments, carried out with strain IMG 6564, at defined pH conditions (between 5.5 and 7) and different temperatures (45, 55 and 60°C) revealed no effect of the incubation temperature, but an important effect of the pH on the product formation. At pH 7, ethanol was the main fermentation product while minor amounts of hydrogen gas, acetic and butyric acid were produced. Lowering the pH gradually to 5.5 resulted in a decrease of ethanol and an increase of biomass, hydrogen gas, acetic, butyric and lactic acids. At pH higher than 7 no growth occurred. Similar conclusions could be drawn for strains IMG 2811T and 6544.  相似文献   

14.
Summary Plasmids fromZ. mobilis could be stably maintained inE. coli HB101 in which the expression of various drug resistance markers could be monitored. A large molecular weight plasmid (5.2 kbp) ofZ. mobilis was found to harbour the genes for mercuric chloride degradation and to confer uponE. coli, resistance to a higher mercuric chloride concentration as compared toZ. mobilis. The introduction of this plamsid madeE. coli sensitive to concentrations of cadmium acetate which were originally non-inhibitory to it.  相似文献   

15.
Suspension cultured cells of the liverwort, Reboulia hemisphaerica and of the moss, Barbula unguiculata were independently subcultured in the medium containing 2% glucose in the dark or in the light for more than one year, and the photosynthetic activities of the final cultures were determined. Throughout the culture period light-grown cells of both species contained high amount of chlorophyll (4 to 34 g mg–1 dry weight) and showed a high photosynthetic activity (10 to 84 mol O2 mg–1 chlorophyll h–1). Dark-grown cells of R. hemisphaerica showed the same level of chlorophyll content and photosynthetic O2 evolving activity as light-grown cells. Although chlorophyll content in dark-grown B. unguiculata cells was ten-fold lower than that in light-grown cells, the photosynthetic activity of these dark-grown cells was higher than that of light-grown cells based on chlorophyll content.  相似文献   

16.
Abstract The affinities for sulfide and acetate under mixotrophic conditions have been determined for the brown Chlorobium phaeobacteroides and the purple Thiocapsa roseopersicina isolated from a bloom in Lake Kinneret (Israel) at a depth of about 18 m. C. phaeobacteroides exhibited a far higher affinity for sulfide than T. roseopersicina . For acetate, the opposite was observed.
In light-limited continuous cultures, C. phaeobacteroides preferentially used sulfide, whereas in mixotrophic cultures of T. roseopersicina sulfide could be detected without detectable acetate. Competition experiments under increasingly severe light limitation resulted in co-existence of the two strains. Relatively high light intensities resulted in a dominance of T. roseopersicina over C. phaeobacteroides , whereas at lower intensities C. phaeobacteroides became dominant. However, at light intensities below 2 μEin · m−2· s−1, T. roseopersicina was completely excluded.
At low light intensities, C. phaeobacteroides is able to grow at a much higher rate than T. roseopersicina . The maintenance rate constant μe of C. phaeobacteroides is −0.001 h−1, whereas that of T. roseopersicina is −0.011 h−1. However, high light intensities inhibit the growth rate of C. phaeobacteroides , but not that of T. roseopersicina .
The explanation of the high numbers of C. phaeobacteroides in Lake Kinneret appears to be the combination of low light intensities and low sulfide concentrations. As a result, the incorporation of acetate is enhanced. The low numbers of T. roseopersicina can be explained by the high maintenance energy requirements of this organism, which exceed the available light at the depth of the bloom.  相似文献   

17.
Summary Net photosynthesis of Picea abies was measured in a spruce forest in northern Germany with temperature- and humidity-controlled cuvettes in 4 different crown layers on shoots of different ages. These measurments were performed such that temperature and humidity either followed ambient conditions or were kept constant. Annual courses of light-, temperature-, and humidity-related net photosynthesis were determined. Spruce had a remarkably constant rate of CO2 uptake from April to September for 1-year and older needles. Light saturation was achieved at 25 klx. Current year needles had the highest rates of CO2 uptake in early summer, but these rates decreased by autumn. Photosynthetic capacity decreased with needle age and, on a dry weight basis, it was higher in the shade than in the sun crown. The temperature optimum was between 13 and 23° C. Photosynthesis in spruce decreased when air humidity was low.The effect of the natural weather conditions on photosynthetic capacity was determined. The habitat is characterized by a high frequency of low light intensities (75% of total daytime below 20 klx) and cool temperatures (80% of daytime between 9 and 21° C). Low air humidity was only present when light intensities were high. The major limiting factor for production was low light intensities, which reduced photosynthetic capacity in the sun crown to 42% below maximum possible rates. Adverse temperatures reduced CO2 uptake by 28% and large water vapor pressure deficits reduced rates by only 2% compared with maximum possible rates. The limited adaptation to light is discussed.  相似文献   

18.
Summary Two thermophilic strains of Lactobacillus were transformed by electroporation; L.fermentum with a maximum of frequency of 1×105/ug of plasmid vector pPSC20DNA and 1.4×103/ug pSA3DNA. L.helveticus showed a very low frequency of transformation, from 9 to 26 transformants/ug DNA in all the experiments carried out with both the vectors. While L.fermentum transformants were very stable, in L.helveticus the acquired plasmid was lost after 30–50 generations.  相似文献   

19.
K. Bauer  R. Conrad  W. Seiler 《BBA》1980,589(1):46-55
Net photosynthesis and CO production were measured in cell suspensions of Chlorella fusca. The rate of net photosynthesis showed saturation curves with increasing radiation intensities and CO2-mixing ratios. Maximum rates were found at 35° C with a sharp decrease at higher temperatures. By contrast, the rate of CO production was proportional to the radiation intensity and did not show any saturation up to 1.5 kW · m?2 white light. The CO-production rate was higher in blue than in red light and was independent of the CO2-mixing ratio of the carrier gas within a range of 0–1000 ppmv. We found that the CO-production rate was constant within the physiological temperature range of 10–35° C, but increased considerably at higher temperatures and that CO production by the chlorophyll-deficient mutant of C. fusca was 5 times that of the wild type. In addition, we measured CO production in cell suspensions of Chromatium vinosum, Rhodopseudomonas sphaeroides and Rhodopseudomonas acidophila, which were grown either anaerobically in the light or aerobically in the dark. CO production could only be observed when the cells were incubated in the presence of oxygen and light. Under these conditions more CO was produced by aerobically grown cells than by phototrophically grown cells of R. sphaeroides and R. acidophila. The results obtained indicate that CO was produced by photosensitized oxidations and not by metabolic processes.  相似文献   

20.
SYNOPSIS. Acetate metabolism was studied in 2 strains of the green alga Pandorina morum. Both strains were capable of mixotrophic growth in the light, but only one strain was capable of heterotrophic growth in the dark. 14C-2-acetate uptake by both strains was studied in the light and dark, in the presence and absence of CO2 and 3(3,4-dichlorophenyl)-1,1-dimethylurea (10?5M). The distribution of radioactivity incorporated into the insoluble, aqueous and chloroform soluble fractions of the cells was determined. The strain incapable of heterotrophic growth in the dark was found to incorporate very little acetate in the dark, and its ability to incorporate acetate into the insoluble fraction was severely limited under all conditions. Incorporation into the aqueous and chloroform-soluble fractions in the light was similar in both strains. The reduced incorporation into the insoluble fraction was almost totally the result of limited incorporation of acetate into polysaccharides by the obligate phototrophic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号