首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrated that the Kirsten murine sarcoma virus (KiMSV) and the Harvey murine sarcoma virus (HaMSV) converted human skin fibroblasts (HSF) into adipocytes. Adipocytic conversion of HSF by KiMSV and HaMSV was dependent on the presence of glucocorticosteroids. The Kirsten murine leukemia virus, the Harvey murine sarcoma [corrected] virus and the amphotropic helper virus (AP292) were ineffective by themselves. Balb murine sarcoma virus and Moloney murine sarcoma virus were, to a lesser degree, able to effect adipocytic conversion of HSF. In contrast, the feline sarcoma virus and the simian sarcoma virus did not cause this conversion. Together, the results suggest a role for certain oncogenes and glucocorticosteroids in the transformation/neodifferentiation of human cells.  相似文献   

2.
3.
The myeloproliferative sarcoma virus (MPSV) derived from Moloney sarcoma virus (MSV-Mol) is a unique sarcoma virus which causes expansion of the hematopoietic stem cell compartment as well as the erythroid and myeloid cell lineages. MPSV also induces spleen focus formation in adult mice as do Friend and Rauscher viruses. Analysis of the MPSV genome on methyl mercury gels showed that the genome size is 7.0 kilobases, which is larger than the defective genome of any known MSV-Mol isolate. Hybridization analysis with specific cDNA probes showed that MPSV is a modified sarcoma virus with no sequences in the unique region of the defective sarcoma genome related to unique Friend virus sequences. The only viral sequences in the defective genome other than helper virus-related sequences are derived from the Moloney sarcoma virus genome with no new cellular sequences added. There was no evidence for induction of xenotropic virus sequences in MPSV-infected spleens of DBA/2J mice, indicating that spleen focus formation can be obtained by different mechanisms.  相似文献   

4.
In studies of the viral and cellular functions involved in expression of transformation by murine sarcoma virus, selective methods have led to the isolation of morphologic revertants following mitomycin C mutagenization of nonproductively transformed mouse cells. The revertants exhibit normal growth properties, yet still contain the sarcoma virus. Further, they are as susceptible as normal cells to exogenous sarcoma virus infection. In the present studies, these revertants are shown to contain levels of sarcoma viral RNA quantitatively and qualitatively indistinguishable from that present in the parental transformed clone. Following rescue with helper leukemia virus, they release low levels of wild-type transforming virus and a large excess of transformation-defective sarcoma virus as measured by molecular hybridization. The defective viruses can be transmitted to new cells in the absence of morphologic alteration. These results provide strong evidence that the revertants contain mutant viruses defective in transforming functions. The release of wild-type sarcoma virus by cells in a revertant culture appears to occur concomitantly with the spontaneous appearance of retransformed cells. This suggests that the reversion of mutant virus to wild-type within the cell occurs as a result of reversion of a point mutation in the integrated sarcoma viral genome. The present sarcoma virus mutants appear to be the first obtained by spontaneous or chemically-induced genetic alteration of stably integrated virus in eucaryotic cells.  相似文献   

5.
Myeloproliferative virus, derived from Moloney sarcoma virus, causes erythroleukemia and myeloid leukemia in adult mice. This virus is also capable of fibroblast transformation in vitro. The virus consists of two separable biological entities which have been cloned. The helper virus component caused no visible changes in adult mice, whereas the defective virus induced both spleen focus formation and a large increase in erythroid precursor cells but retained the sarcoma virus property of transforming fibroblasts in vitro. Thus, myeloproliferative virus is the first murine sarcoma virus which induces erythroleukemia in adult animals.  相似文献   

6.
Recovered avian sarcoma viruses are recombinants between transformation-defective mutants of Rous sarcoma virus and the chicken cellular gene homologous to the src gene of Rous sarcoma virus. We have constructed and analyzed molecular clones of viral deoxyribonucleic acid from recovered avian sarcoma virus and its transformation-competent progenitor, the Schmidt-Ruppin A strain of Rous sarcoma virus. A 2.0-megadalton EcoRI fragment containing the entire src gene from each of these clones was subcloned and characterized. These fragments were also used as probes to isolate recombinant phage clones containing the cellular counterpart of the viral src gene, termed cellular src, from a lambda library of chicken deoxyribonucleic acid. The structure of cellular src was analyzed by restriction endonuclease mapping and electron microscopy. Restriction endonuclease mapping revealed extensive similarity between the src regions of Rous sarcoma virus and recovered avian sarcoma virus, but striking differences between the viral src's and cellular src. Electron microscopic analysis of heteroduplexes between recovered virus src and cellular src revealed a 1.8-kilobase region of homology. In the cellular gene, the homologous region was interrupted by seven nonhomologous regions which we interpret to be intervening sequences. We estimate the minimum length of cellular src to be about 7.2 kilobases. These findings have implications concerning the mechanism of formation of recovered virus src and possibly other cell-derived retrovirus transforming genes.  相似文献   

7.
8.
9.
The genetic information contained in the Kirsten and Moloney strains of mammalian RNA-containing sarcoma viruses has been analyzed by RNA . (3)H-DNA hybridization. Kirsten sarcoma virus has been found to possess two distinct sets of nucleic acid sequences. One set of sequences is contained in murine type C helper virus, and the other set is contained in rat type C helper virus. Moloney sarcoma virus contains sequences of murine type C helper virus but not of rat type C helper virus. The results indicate that Kirsten sarcoma virus arose through a process of recombination between Kirsten murine leukemia virus and nucleic acid sequences found in rat cells. A model is suggested for the formation of transforming type C viruses involving the transduction of oncogenic information.  相似文献   

10.
No significant hybridization was detected of DNA from simian virus 40 or polyoma virus, and of 70S RNA from avian myeloblastosis virus, murine leukemia virus (Rauscher), murine sarcoma virus (Kirsten), RD-114B, simian sarcoma virus-1, or Mason-Pfizer virus.  相似文献   

11.
Rasheed rat sarcoma virus, derived by in vitro cocultivation of two rat cell lines (Rasheed et al., Proc. Natl. Acad. Sci. U.S.A. 75:2972-2976, 1978), has been reported to code for a protein of 29,000 Mr, immunologically related to the 21,000 Mr src gene product of Harvey and Kirsten sarcoma viruses. Rat sarcoma virus p29 was thought to contain at least part of a rat type C virus structural protein, since antiserum prepared against whole rat virus was able to immunoprecipitate rat sarcoma virus p29 but not Harvey or Kirsten sarcoma virus p21 (Young et al., Proc. Natl. Acad. Sci. U.S.A. 76:3523-3527, 1979). We now report that antiserum directed against rat type C virus p15, but not viral p12, p10, or p27, immunoprecipitated rat sarcoma virus p29. The p15 antiserum was also able to immunoprecipitate both denatured p29 and a peptide derived by V-8 protease cleavage of p29, indicating that this antiserum contains antibodies directed against primary amino acid determinants. Finally, five separate isolates of rat sarcoma virus were found to code for p29, which indicates that a highly specific site of recombination is involved in the generation of sarcoma viruses in rat cells.  相似文献   

12.
13.
14.
The nucleic acid sequences found in DNA and RNA from rat cells which are homologous to Kirsten sarcoma virus have been characterized. The homologous sequences are present in multiple copies per diploid rat cellular genome in a variety of different rat cellular dna's. In certain cells that constitutively express only low levels of sequences homologous to Kirsten sarcoma virus, bromodeoxyuridine treatment leads to the expression of high levels of these sequences in RNA. Supernatants from cell lines producing the sequences homologous to Kirsten sarcoma virus contain high levels of these sequences which are purified to the same degree as the previously known rat type C viral nucleic acid sequences by type C particles being released from such cells. The results indicate that the sequences in rat cells homologous to Kisten sarcoma virus have three characteristics of known mammalian type C viruses, and suggest that at least part of Kirsten sarcoma virus rat-derived sequences represent a distinct class of endogenous rat type C virus that has no detectable homology to the other known class of endogenous rat type C virus.  相似文献   

15.
Cultured cells of mammalian tumors induced by ribonucleic acid (RNA)-containing oncogenic viruses were examined for production of virus. The cell lines were established from tumors induced in rats and hamsters with either Rous sarcoma virus (Schmidt-Ruppin or Bryan strains) or murine sarcoma virus (Moloney strain). When culture fluids from each of the cell lines were examined for transforming activity or production of progeny virus, none of the cell lines was found to be infectious. However, electron microscopic examination of the various cell lines revealed the presence of particles in the rat cells transformed by either Rous sarcoma virus or murine sarcoma virus. These particles, morphologically similar to those associated with murine leukemias, were found both in the extracellular fluid concentrates and in whole-cell preparations. In the latter, they were seen budding from the cell membranes or lying in the intercellular spaces. No viruslike particles were seen in preparations from hamster tumors. Exposure of the rat cells to (3)H-uridine resulted in the appearance of labeled particles with densities in sucrose gradients typical of virus (1.16 g/ml.). RNA of high molecular weight was extracted from these particles, and double-labeling experiments showed that this RNA sedimented at the same rate as RNA extracted from Rous sarcoma virus. None of the hamster cell lines gave radioactive peaks in the virus density range, and no extractable high molecular weight RNA was found. These studies suggest that the murine sarcoma virus produces an infection analogous to certain "defective" strains of Rous sarcoma virus, in that particles produced by infected cells have a low efficiency of infection. The control of the host cell over the production and properties of the RNA-containing tumorigenic viruses is discussed.  相似文献   

16.
Serum-free conditioned media was collected from three sarcoma virus-transformed cell lines and an untransformed cell line. All three virally transformed lines produced and released growth factors into their serum-free media. The major activity in all cases, whether the cells were transformed by Moloney sarcoma virus (MSV) or Kirsten sarcoma virus (KiSV), or whether they were mouse or rat, was a sarcoma-growth-factor (SGF)-like activity with an apparent molecular weight of 10,000. The SGF-like pools from a Moloney sarcoma virus-transformed mouse 3T3 cell and a Kirsten sarcoma virus-transformed NRK cell were further purified by carboxymethyl cellulose chromatography. The elution profiles of these peptides were very similar. The serum-free conditioned media from the untransformed cells showed no detectable growth stimulating activity. The temperature sensitivity of an SGF-like growth factor from the supernate of a NRK cell transformed by a wild-type Kirsten sarcoma virus (KiSV) was compared with that of the SGF-like activity from the supernates of a NRK cell transformed by a ts-mutant of KiSV that is temperature sensitive with respect to transformation (ts-371 Cl 5). Neither the cells transformed by the wild-type sarcoma virus nor those transformed by the temperature sensitive virus released a SGF-like activity that was temperature sensitive under the conditions of the assays.  相似文献   

17.
Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.  相似文献   

18.
Murine fibroblasts transformed by transfection with DNA from mink cells infected with the Snyder-Theilen strain of feline sarcoma virus and subgroup B feline leukemia virus were analyzed for the presence of integrated proviral DNA and the expression of feline leukemia virus- and feline sarcoma virus-specific proteins. The transformed murine cells harbored at least one intact feline sarcoma virus provirus, but did not contain feline leukemia virus provirus. The transformed murine cells expressed an 85,000-dalton protein that was precipitated by antisera directed against feline leukemia virus p12, p15, and p30 proteins. No feline oncornavirus-associated cell membrane antigen reactivity was detected on the surfaces of the transformed murine cells by indirect membrane immunofluorescence techniques. The 85,000-dalton feline sarcoma virus-specific protein was also found in feline cells transformed by transfection. However, these cells also contained env gene products. The results of this study demonstrate that the feline sarcoma virus genome is sufficient to transform murine cells and that expression of the 85,000-dalton gag-x protein is associated with transformation of both murine and feline cells transformed by transfection.  相似文献   

19.
Murine sarcoma virus pseudotypes were prepared by infection of nonproducer cells (A1-2), which were transformed by the Gazdar strain of mouse sarcoma virus, with Gross (N-tropic), WN1802B (B-tropic), or Moloney (NB-tropic) viruses. The respective host range pseudotype sarcoma viruses were defined by the titration characteristics on cells with the appropriate Fv-1 genotype. Proteins from virus progeny were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bands present in both the 65,000- and the 10,000- to 20,000- molecular-weight regions of the gel distinguished the pseudotype viruses from their respective helpers. Furthermore, two protein bands were noted in the p30 region of murine sarcoma virus (Gross), one corresponding to Gross virus p30, and another of slightly slower mobility. However, since the mobility of the putative sarcoma p30 is nearly indentical to that of WN1802B, its presence could not be established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Type-specific radioimmunoassays for Gross virus p30 and for WN1802B p30 were applied for analysis of pseudotype preparations, and among several ecotropic viruses tested, only the homologous virus scored in the respective assay. By use of these assays, pseudotype viruses were found to contain only 8 to 48% helper-specific p30's; the remainder is presumably derived from the sarcoma virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号