首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.  相似文献   

2.
Regulation of tyrosine kinase cascades by G-protein-coupled receptors   总被引:22,自引:0,他引:22  
Mitogenic signaling by G-protein-coupled receptors (GPCRs) involves tyrosine phosphorylation of adaptor proteins and assembly of multiprotein Ras activation complexes. Over the past three years, three types of scaffolds for GPCR-directed complex assembly have been identified: transactivated receptor tyrosine kinases (RTKs), integrin-based focal adhesions, and GPCRs themselves. Nonreceptor tyrosine kinases play an important role in each case. The processes of GPCR desensitization and sequestration via clathrin-coated pits are also involved in signaling through the RTK- and GPCR-based scaffolds.  相似文献   

3.
Context: G protein-coupled receptors (GPCRs) have been classically thought to work as monomeric entities. The current view of their organization, however, assumes that they are part of highly organized molecular complexes, where different receptors and interacting proteins are clustered. These heteromers have peculiar pharmacological, signaling, and trafficking properties. GPCR heteromerization, raising different combinatorial possibilities, thus underlies an unexpected level of diversity within this receptor family.

Methods: In this paper, we summarize recent data, reported by different research groups, suggesting that the dopamine (DA) D1 receptor forms heteromers with receptors of the same family and with structurally and functionally divergent receptors.

Results and discussion: DA D1 and D3 receptors and glutamate NMDA receptors regulate rewarding mechanisms and motivated behavior, modulate emotional and cognitive processes and regulate locomotor activity by extensive cross-talk mechanisms. Co-localization of D1 and D3 receptors and D1 and NMDA receptors in specific neuronal populations in the striatum and nucleus accumbens, moreover, suggested that their cross-talk may involve direct interactions. By using different experimental approaches various groups have, in fact, demonstrated the existence of D1-NMDA and D1-D3 heteromers, in both transfected cell systems and in the straitum, with peculiar pharmacological, signaling, and functional properties. The putative role of the D1-D3 and D1-NMDA heteromers in the physiological regulation of striatal function and in the development of motor dysfunctions will be discussed.  相似文献   

4.
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.  相似文献   

5.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

6.
Tagged G‐protein‐coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N‐terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C‐terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N‐terminus, or EGFP located at the C‐terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 56–68, 2002  相似文献   

7.
G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms. Currently, the difficulty of preparing functional GPCRs and the lack of efficient antibody screening methods are the most challenging steps in the discovery of antibodies targeting GPCRs. In this study, we developed a powerful platform that facilitates isolating GPCR-specific antibodies by obviating difficulties in GPCR preparation. The strategies include (i) conjugation of the P9 peptide, an envelope protein of Pseudomonas phi6, to the N-terminus of GPCRs to improve the expression level of the GPCRs in Escherichia coli, (ii) stabilization of the GPCRs in their active forms with amphiphilic poly-γ-glutamate (APG) to shield the seven hydrophobic transmembrane domains, and (iii) further limiting the size of the APG complex to improve the chance to isolate antibodies targeting the proteins-of-interest. Capitalizing on the above strategies, we could prepare GPCR proteins in their active forms as facile as other general-soluble antigen proteins. Furthermore, this protocol was validated to be successful in discovering three individual GPCR-specific antibodies targeting glucagon-like peptide-1 receptor, C-X-C chemokine receptor type 4, and prostaglandin E2 receptor 4 in this study.  相似文献   

8.
Transmembrane signaling requires modular interactions between signaling proteins, phosphorylation or dephosphorylation of the interacting protein partners [1] and temporary elaboration of supramolecular structures [2], to convey the molecular information from the cell surface to the nucleus. Such signaling complexes at the plasma membrane are instrumental in translating the extracellular cues into intracellular signals for gene activation. In the most straightforward case, ligand binding promotes homodimerization of the transmembrane receptor which facilitates modular interactions between the receptor's cytoplasmic domains and intracellular signaling and adaptor proteins [3]. For example, most growth factor receptors contain a cytoplasmic protein tyrosine kinase (PTK) domain and ligand-mediated receptor dimerization leads to cross phosphorylation of tyrosines in the receptor's cytoplasmic domains, an event that initiates the signaling cascade [4]. In other signaling pathways where the receptors have no intrinsic kinase activity, intracellular non-receptor PTKs (i.e. Src family PTKs, JAKs) are recruited to the cytoplasmic domain of the engaged receptor. Execution of these initial phosphorylations and their translation into efficient cellular stimulation requires concomitant activation of diverse signaling pathways. Availability of stable, preassembled matrices at the plasma membrane would facilitate scaffolding of a large array of receptors, coreceptors, tyrosine kinases and other signaling and adapter proteins, as it is the case in signaling via the T cell antigen receptor [5]. The concept of the signaling platform [6] has gained usage to characterize the membrane structure where many different membrane-bound components need to be assembled in a coordinated manner to carry out signaling.The structural basis of the signaling platform lies in preferential assembly of certain classes of lipids into distinct physical and functional compartments within the plasma membrane [7,8]. These membrane microdomains or rafts (Figure 1) serve as privileged sites where receptors and proximal signaling molecules optimally interact [9]. In this review, we shall discuss first how signaling platforms are assembled and how receptors and their signaling machinery could be functionally linked in such structures. The second part of our review will deal with selected examples of raft-based signaling pathways in T lymphocytes and NK cells to illustrate the ways in which rafts may facilitate signaling.  相似文献   

9.
Ion channels and G protein-coupled receptors (GPCRs) are integral transmembrane proteins vital to a multitude of cell signaling and physiological functions. Members of these large protein families are known to interact directly with various intracellular protein partners in a dynamic and isoform-dependent manner, ultimately shaping their life cycle and signal output. The family of G protein-gated inwardly rectifying potassium channels (Kir3 or GIRK) expressed in brain, heart, and endocrine tissues were recently shown to stably associate with several different GPCRs, forming the basis of a macromolecular ion channel-GPCR signaling complex. The molecular determinants that mediate and maintain GPCR-Kir3 channel complexes are currently not well understood. Recent findings and emerging hypotheses on the assembly and stability of multiprotein GPCR-Kir channel signaling complexes are discussed, highlighting distinct mechanisms used by different Kir channel families. These protein-protein interaction processes are crucial in determining both the synaptic response times and the extent of GPCR “cross-talk” in Kir3-mediated inhibitory synaptic transmission.  相似文献   

10.
GPCR-Kir channel signaling complexes: defining rules of engagement   总被引:2,自引:0,他引:2  
Ion channels and G protein-coupled receptors (GPCRs) are integral transmembrane proteins vital to a multitude of cell signaling and physiological functions. Members of these large protein families are known to interact directly with various intracellular protein partners in a dynamic and isoform-dependent manner, ultimately shaping their life cycle and signal output. The family of G protein-gated inwardly rectifying potassium channels (Kir3 or GIRK) expressed in brain, heart, and endocrine tissues were recently shown to stably associate with several different GPCRs, forming the basis of a macromolecular ion channel-GPCR signaling complex. The molecular determinants that mediate and maintain GPCR-Kir3 channel complexes are currently not well understood. Recent findings and emerging hypotheses on the assembly and stability of multiprotein GPCR-Kir channel signaling complexes are discussed, highlighting distinct mechanisms used by different Kir channel families. These protein-protein interaction processes are crucial in determining both the synaptic response times and the extent of GPCR "cross-talk" in Kir3-mediated inhibitory synaptic transmission.  相似文献   

11.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   

12.
A wide range of intracellular proteins have been demonstrated to interact with individual G protein-coupled receptors (GPCRs) and, in certain cases, to modulate their function or trafficking. However, in only a few cases have the GPCR selectivity of such interactions been investigated. Interactions between the intracellular C-terminal tails of 44 GPCRs and both neurochondrin and periplakin were assessed in pull-down studies. 23 of these interacted with neurochondrin and periplakin, 10 interacted with neither whilst nine interacted with only neurochondrin and two with only periplakin. When appropriate GIP-interacting Gq/G11-coupled GPCRs were expressed in cells inducibly expressing neurochondrin or periplakin this resulted in a reduction in the increase in intracellular [Ca2+] in response to agonist. However, induction of neurochondrin or periplakin was without functional consequences for GPCRs with which they did not interact. Unlike intracellular [Ca2+] signals, induction of expression of either interacting protein did not inhibit agonist-mediated ERK1/2 MAPK phosphorylation. These data indicate that both periplakin and neurochondrin can interact with a wide range of GPCRs and modulate function selectively. Details of the structure of the intracellular C-terminal tail of individual receptors will be required to fully understand the basis of such selectivity.  相似文献   

13.
Histamine H3 receptor (H3R), one of G protein-coupled receptors (GPCRs), has been known to regulate neurotransmitter release negatively in central and peripheral nervous systems. Recently, a variety of intracellular proteins have been identified to interact with carboxy (C)-termini of GPCRs, and control their intracellular trafficking and signal transduction efficiencies. Screening for such proteins that interact with the C-terminus of H3R resulted in identification of one of the chloride intracellular channel (CLIC) proteins, CLIC4. The association of CLIC4 with H3R was confirmed in in vitro pull-down assays, coimmunoprecipitation from rat brain lysate, and immunofluorescence microscopy of rat cerebellar neurons. The data from flowcytometric analysis, radioligand receptor binding assay, and cell-based ELISA indicated that CLIC4 enhanced cell surface expression of wild-type H3R, but not a mutant form of the receptor that failed to interact with CLIC4. These results indicate that, by binding to the C-terminus of H3R, CLIC4 plays a critical role in regulation of the receptor cell surface expression.  相似文献   

14.
The intracellular regulator of G protein signalling (RGS) proteins were first identified as GTPase activating proteins (GAPs) for heterotrimeric G proteins, however, it was later found that they can also regulate G protein-effector interactions in other ways that are still not well understood. There is increasing evidence that some of the effects of RGS proteins occur due to their ability to interact with multiprotein signalling complexes. In this review, we will discuss recent evidence that supports the idea that RGS proteins can bind to proteins other than Galpha, such as G protein coupled receptors (GPCRs, e.g. muscarinic, dopaminergic, adrenergic, angiotensin, interleukin and opioid receptors) and effectors (e.g. adenylyl cyclase, GIRK channels, PDEgamma, PLC-beta and Ca(2+) channels). Furthermore, we will investigate novel RGS binding partners (e.g. GIPC, spinophilin, 14-3-3) that underlie the formation of signalling scaffolds or govern RGS protein availability and/or activity.  相似文献   

15.
Bockaert J  Pin JP 《The EMBO journal》1999,18(7):1723-1729
Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.  相似文献   

16.
The ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is densely distributed in the mammalian brain and is primarily involved in mediating fast excitatory synaptic transmission. Recent studies in both heterologous expression systems and cultured neurons have shown that the AMPA receptor can be phosphorylated on their subunits (GluR1, GluR2, and GluR4). All phosphorylation sites reside at serine, threonine, or tyrosine on the intracellular C-terminal domain. Several key protein kinases, such as protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine kinases (Trks; receptor or nonreceptor family Trks) are involved in the site-specific regulation of the AMPA receptor phosphorylation. Other glutamate receptors (N-methyl-d-aspartate receptors and metabotropic glutamate receptors) also regulate AMPA receptors through a protein phosphorylation mechanism. Emerging evidence shows that as a rapid and short-term mechanism, the dynamic protein phosphorylation directly modulates the electrophysiological, morphological (externalization and internalization trafficking and clustering), and biochemical (synthesis and subunit composition) properties of the AMPA receptor, as well as protein-protein interactions between the AMPA receptor subunits and various intracellular interacting proteins. These modulations underlie the major molecular mechanisms that ultimately affect many forms of synaptic plasticity.  相似文献   

17.
G-protein-coupled receptors (GPCRs) are a large family of remarkably versatile membrane proteins that are attractive therapeutic targets because of their involvement in a vast range of normal physiological processes and pathological diseases. Upon activation, intracellular domains of GPCRs mediate signaling to G-proteins, but these domains have yet to be effectively exploited as drug targets. Cell-penetrating lipidated peptides called pepducins target specific intracellular loops of GPCRs and have recently emerged as effective allosteric modulators of GPCR activity. The lipid moiety facilitates translocation across the plasma membrane, where pepducins then specifically modulate signaling of their cognate receptor. To date, pepducins and related lipopeptides have been shown to specifically modulate the activity of diverse GPCRs and other membrane proteins, including protease-activated receptors (PAR1, PAR2, and PAR4), chemokine receptors (CXCR1, CXCR2, and CXCR4), sphingosine 1-phosphate receptor-3 (S1P3), the melanocortin-4 receptor, the Smoothened receptor, formyl peptide receptor-2 (FPR2), the relaxin receptor (LGR7), G-proteins (Gα(q/11/o/13)), muscarinic acetylcholine receptor and vanilloid (TRPV1) channels, and the GPIIb integrin. This minireview describes recent advances made using pepducin technology in targeting diverse GPCRs and the use of pepducins in identifying potential novel drug targets.  相似文献   

18.
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis. This gave the surprising result that the 5HT(1A) receptor was capable of forming hetero-oligomers with all GPCRs tested including the 5HT(1B), 5HT(1D), EDG(1), EDG(3), GPR(26), and GABA(B2) receptors. The testing of other GPCR combinations showed similar results with hetero-oligomer formation occurring for the 5HT(1D) with the 5HT(1B) and EDG(1) receptor. Control studies showed that these complexes were present in co-transfected cells before the time of lysis and that the hetero-oligomers were comprised of GPCRs at discrete stoichiometries. These findings suggest that GPCRs have a natural tendency to form oligomers when co-transfected into cells. Future studies should therefore investigate the presence and physiological role of GPCR hetero-oligomers in cells in which they are endogenously expressed.  相似文献   

19.
During the past few years several new interacting partners for G protein-coupled receptors (GPCRs) have been discovered, suggesting that the activity of these receptors is more complex than previously anticipated. Recently, candidate G protein-coupled receptor associated sorting protein (GASP-1) has been identified as a novel interacting partner for the delta opioid receptor and has been proposed to determine the degradative fate of this receptor. We show here that GASP-1 associates in vitro with other opioid receptors and that the interaction domain in these receptors is restricted to a small portion of the carboxyl-terminal tail, corresponding to helix 8 in the three-dimensional structure of rhodopsin. In addition, we show that GASP-1 interacts with COOH-terminus of several other GPCRs from subfamilies A and B and that two conserved residues within the putative helix 8 of these receptors are critical for the interaction with GASP-1. In situ hybridization and northern blot analysis indicate that GASP-1 mRNA is mainly distributed throughout the central nervous system, consistent with a potential interaction with numerous GPCRs in vivo. Finally, we show that GASP-1 is a member of a novel family comprising at least 10 members, whose genes are clustered on chromosome X. Another member of the family, GASP-2, also interacts with the carboxyl-terminal tail of several GPCRs. Therefore, GASP proteins may represent an important protein family regulating GPCR physiology.  相似文献   

20.
G protein-coupled receptors (GPCRs) are integral membrane proteins that, in response to activation by extracellular stimuli, regulate intracellular second messenger levels via their coupling to heterotrimeric G proteins. GPCR activation also initiates a series of molecular events that leads to G protein-coupled receptor kinase-mediated receptor phosphorylation and the binding of beta-arrestin proteins to the intracellular face of the receptor. beta-Arrestin binding not only contributes to the G protein-uncoupling of GPCRs, but also mediates the targeting of many GPCRs for endocytosis in clathrin-coated pits. Several GPCRs internalize as a stable complex with beta-arrestin and the stability of this complex appears to regulate, at least in part, whether the receptors are dephosphorylated in early endosomes and recycled back to the cell surface as fully functional receptors, retained in early endosomes or targeted for degradation in lysosomes. More recently, it has become appreciated that the movement of GPCRs through functionally distinct intracellular membrane compartments is regulated by a variety of Rab GTPases and that the activity of these Rab GTPases may influence GPCR function. Moreover, it appears that GPCRs are not simply passive cargo molecules, but that GPCR activation may directly influence Rab GTPase activity and as such, GPCRs may directly control their own targeting between intracellular compartments. This review provides a synopsis of the current knowledge regarding the role of beta-arrestins and Rab GTPases in regulating the intracellular trafficking and function of GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号