首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

2.
Wheat endosperm texture is controlled primarily by a locus (Ha), which comprises Gsp-1, Pina and Pinb genes encoding the so-called grain softness protein, puroindoline-a and puroindoline-b, respectively. Pina and Pinb were detected only on the D-genome of hexaploid wheat and its diploid progenitors while Gsp-1 was on all three homoeologous loci. Hexaploid cultivar Glenlea has a hard phenotype due to a null Pina genotype (D-genome) but the sequence organization is not reported. This study aimed at understanding the evolution of homoeologous Ha loci. Sequencing of three BAC clones from cv Glenlea was performed and sequence analyses delimited the Ha loci which spanned 3,925, 5,330 and 31,607 bp in the A-, B- and D-genomes, respectively. A solo LTR of Angela retroelement, downstream to Gsp-A1 and a fragment of Sabrina retroelement, downstream of Gsp-B1, were discovered. We propose that the insertion of these elements into the intergenic regions have driven the deletions of genomic segments harbouring Pina and Pinb genes in the A- and B-genomes of hexaploid wheat. Similarly, fragments of Romani and Vagabond retroelements were identified between truncated Pina and Pinb genes, indicating their role in the deletion of Pina in Glenlea, leading to its hard texture. Structural differences of the Ha locus region of the A-genome between two hexaploid wheat varieties namely Glenlea and Renan (CR626929), suggested the presence of more than one tetraploid ancestor in the origin of hexaploid wheat.  相似文献   

3.
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.  相似文献   

4.
Bread wheat (Triticum aestivum) is an allohexaploid species, consisting of three subgenomes (A, B, and D). To study the molecular evolution of these closely related genomes, we compared the sequence of a 307-kb physical contig covering the high molecular weight (HMW)-glutenin locus from the A genome of durum wheat (Triticum turgidum, AABB) with the orthologous regions from the B genome of the same wheat and the D genome of the diploid wheat Aegilops tauschii (Anderson et al., 2003; Kong et al., 2004). Although gene colinearity appears to be retained, four out of six genes including the two paralogous HMW-glutenin genes are disrupted in the orthologous region of the A genome. Mechanisms involved in gene disruption in the A genome include retroelement insertions, sequence deletions, and mutations causing in-frame stop codons in the coding sequences. Comparative sequence analysis also revealed that sequences in the colinear intergenic regions of these different genomes were generally not conserved. The rapid genome evolution in these regions is attributable mainly to the large number of retrotransposon insertions that occurred after the divergence of the three wheat genomes. Our comparative studies indicate that the B genome diverged prior to the separation of the A and D genomes. Furthermore, sequence comparison of two distinct types of allelic variations at the HMW-glutenin loci in the A genomes of different hexaploid wheat cultivars with the A genome locus of durum wheat indicates that hexaploid wheat may have more than one tetraploid ancestor.  相似文献   

5.
The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.  相似文献   

6.
Summary Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats.  相似文献   

7.
Puroindoline a(Pina)和puroindoline b(Pinb)是控制小麦籽粒硬度的主效基因。根据已报道的小麦Pinb基因的保守序列,设计合成了一对特异性引物,对六倍体牡山羊草Aegilops juvenalis(UUMMDD)的基因组DNA和胚乳eDNA进行Pinb基因扩增、克隆和序列测定,发现了两个新型Pinb等位基因Pinb-allele-1和Pinb-allele-2。该基因全长360bp,编码119个氨基酸残基。它编码的蛋白和麦类作物Puroindoline B(PinB)的成熟蛋白有非常高的同源性,具有麦类作物PinB蛋白所特有的WPTKWWK的色氨酸结构域和10个半胱氨酸所形成的5个二硫键结构。与软粒小麦ev.Capitole的Pinb-D1a相比较,其核苷酸同源性为93.1%、93.3%,氨基酸同源性为90.8%、92.4%。Pinb。allele。1和Pinb—allele一2分别含有11和9个氨基酸变异位点。RT—PCR证实了Pinb—allele一2基因在籽粒胚乳中的表达。SouthernBlot分析结果表明,牡山羊草中含有两个拷贝的Pinb基因,其中包含着与小麦差异较大的籽粒硬度控制基因。  相似文献   

8.
Cakmak  I.  Cakmak  O.  Eker  S.  Ozdemir  A.  Watanabe  N.  Braun  H.J. 《Plant and Soil》1999,215(2):203-209
The effect of varied zinc (Zn) supply on shoot and root dry matter production, severity of Zn deficiency symptoms and Zn tissue concentrations was studied in two Triticum turgidum (BBAA) genotypes and three synthetic hexaploid wheat genotypes by growing plants in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn=5 mg kg-1 soil) and without (−Zn) Zn supply. Two synthetic wheats (BBAADD) were derived from two different Aegilops tauschii (DD) accessions using same Triticum turgidum (BBAA), while one synthetic wheat (BBAAAA) was derived from Triticum turgidum (BBAA) and Triticum monococcum (AA). Visible symptoms of Zn deficiency, such as occurrence of necrotic patches on leaves and reduction in shoot elongation developed more rapidly and severely in tetraploid wheats than in synthetic hexaploid wheats. Correspondingly, decreases in shoot and root dry matter production due to Zn deficiency were higher in tetraploid wheats than in synthetic hexaploid wheats. Transfer of the DD genome from Aegilops tauschii or the AA genome from Triticum monococcum to tetraploid wheat greatly improved root and particularly shoot growth under Zn-deficient, but not under Zn-sufficient conditions. Better growth and lesser Zn deficiency symptoms in synthetic hexaploid wheats than in tetraploid wheats were not accompanied by increases in Zn concentration per unit dry weight, but related more to the total amount of Zn per shoot, especially in the case of synthetic wheats derived from Aegilops tauschii. This result indicates higher Zn uptake capacity of synthetic wheats. The results demonstrated that the genes for high Zn efficiency from Aegilops tauschii (DD) and Triticum monococcum (AA) are expressed in the synthetic hexaploid wheats. These wheat relatives can be used as valuable sources of genes for improvement of Zn efficiency in wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor   总被引:12,自引:0,他引:12  
Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.  相似文献   

10.
Dvorak J  Akhunov ED 《Genetics》2005,171(1):323-332
The origin of tetraploid wheat and the divergence of diploid ancestors of wheat A and D genomes were estimated to have occurred 0.36 and 2.7 million years ago, respectively. These estimates and the evolutionary history of 3159 gene loci were used to estimate the rates with which gene loci have been deleted and duplicated during the evolution of wheat diploid ancestors and during the evolution of polyploid wheat. During diploid evolution, the deletion rate was 2.1 x 10(-3) locus(-1) MY(-1) for single-copy loci and 1.0 x 10(-2) locus(-1) MY(-1) for loci in paralogous sets. Loci were duplicated with a rate of 2.9 x 10(-3) locus(-1) MY(-1) during diploid evolution. During polyploid evolution, locus deletion and locus duplication rates were 1.8 x 10(-2) and 1.8 x 10(-3) locus(-1) MY(-1), respectively. Locus deletion and duplication rates correlated positively with the distance of the locus from the centromere and the recombination rate during diploid evolution. The functions of deleted and duplicated loci were inferred to gain insight into the surprisingly high rate of deletions of loci present apparently only once in a genome. The significance of these findings for genome evolution at the diploid and polyploid level is discussed.  相似文献   

11.
Ten new defensins have been isolated from seeds of Triticum kiharae and related species of the Triticum and Aegilops genera by a combination of chromatographic procedures including affinity-, size-exclusion, and reversed-phase high-performance liquid chromatography. Nine were completely sequenced and shown to represent a family of closely related peptides with highly conserved amino acid sequences. Analysis of defensin compositions in diploid A-, B-, and D-genome donors to polyploid wheat allowed us for the first time to assign most defensin-encoding genes to particular hexaploid wheat genomes.  相似文献   

12.
The genome of common wheat has evolved through allopolyploidization of three ancestral diploid genomes. A previously identified restriction fragment length polymorphism (RFLP) marker, pTag546, has the unique feature of showing hypervariability among closely related common wheat cultivars. To understand the origin and the mode of dispersal of this hypervariable sequence in the wheat genome, the distribution and structure of the homologous sequences were studied using ancestral diploid species, tetraploid disomic substitution lines and synthetic hexaploid lines. Comparative Southern blot and PCR analyses suggested that pTag546 homologs in the tetraploid and hexaploid wheat were derived from the S genome of Aegilops speltoides. Some pTag546 homologs were found to have transposed to A and D genomes in polyploid wheat. Evidence of transposition and elimination in some synthetic hexaploid lines was also obtained by comparing their copy numbers with those in the parental lines. Southern blot analysis of a genomic clone using a contiguous subset of sequences as probes revealed a core region of hypervariability that coincided with the region containing pTag546. No obvious structural characteristics that could explain the hypervariability, however, were found around the pTag546 sequence, except for accumulation of small repetitive sequences at one border. It was concluded that pTag546 increased its copy number through yet unknown mechanism(s) of transposition to various chromosomal locations over the period of allopolyploid evolution and during the artificial genome manipulation in wheat.  相似文献   

13.
Using three diploid (Triticum monococcum, AA), three tetraploid (Triticum turgidum, BBAA), two hexaploid (Triticum aestivum and Triticum compactum, BBAADD) wheats and two Aegilops tauschii (DD) genotypes, experiments were carried out under controlled environmental conditions in nutrient solution (i) to study the relationships between the rates of phytosiderophore (PS) release from the roots and the tolerance of diploid, tetraploid, and hexaploid wheats and AE: tauschii to zinc (Zn) and iron (Fe) deficiencies, and (ii) to assess the role of different genomes in PS release from roots under different regimes of Zn and Fe supply. Phytosiderophores released from roots were determined both by measurement of Cu mobilized from a Cu-loaded resin and identification by using HPLC analysis. Compared to tetraploid wheats, diploid and hexaploid wheats were less affected by Zn deficiency as judged from the severity of leaf symptoms. Aegilops tauschii showed very slight Zn deficiency symptoms possibly due to its slower growth rate. Under Fe-deficient conditions, all wheat genotypes used were similarly chlorotic; however, development of chlorosis was first observed in tetraploid wheats. Correlation between PS release rate determined by Cu-mobilization test and HPLC analysis was highly significant. According to HPLC analysis, all genotypes of Triticum and AE: tauschii species released only one PS, 2'-deoxymugineic acid, both under Fe and Zn deficiency. Under Zn deficiency, rates of PS release in tetraploid wheats averaged 1 micromol x (30 plants)(-1) x (3 h)(-1), while in hexaploid wheats rate of PS release was around 14 micromol x (30 plants)(-1) x (3 h)(-1). Diploid wheats and AE: tauschii accessions behaved similarly in their capacity to release PS and intermediate between tetraploid and hexaploid wheats regarding the PS release capacity. All Triticum and Aegilops species released more PS under Fe than Zn deficiency, particularly when the rate of PS release was expressed per unit dry weight of roots. On average, the rates of PS release under Fe deficiency were 3.0, 5.7, 8.4, and 16 micromol x (30 plants)(-1) x (3 h)(-1) for AE: tauschii, diploid, tetraploid and hexaploid wheats, respectively. The results of the present study show that the PS release mechanism in wheat is expressed effectively when three genomes, A, B and D, come together, indicating complementary action of the corresponding genes from A, B and D genomes to activate biosynthesis and release of PS.  相似文献   

14.
The Hardness (Ha) locus controls grain texture and affects many end-use properties of wheat (Triticum aestivum L.). The Ha locus is functionally comprised of the Puroindoline a and b genes, Pina and Pinb, respectively. The lack of Pin allelic diversity is a major factor limiting Ha functional analyses and wheat quality improvement. In order to create new Ha alleles, a 630 member M(2) population was produced in the soft white spring cultivar Alpowa using ethylmethane sulfonate mutagenesis. The M(2) population was screened to identify new alleles of Pina and Pinb. Eighteen new Pin alleles, including eight missense alleles, were identified. F(2) populations for four of the new Pin alleles were developed after crossing each back to non-mutant Alpowa. Grain hardness was then measured on F(2:3) seeds and the impact of each allele on grain hardness was quantified. The tested mutations were responsible for between 28 and 94% of the grain hardness variation and seed weight and vigor of all mutation lines was restored among the F(2) populations. Selection of new Pin alleles following direct phenotyping or direct sequencing is a successful approach to identify new Ha alleles useful in improving wheat product quality and understanding Ha locus function.  相似文献   

15.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   

16.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

17.
The polyploid nature of hexaploid wheat (T. aestivum, AABBDD) often represents a great challenge in various aspects of research including genetic mapping, map-based cloning of important genes, and sequencing and accurately assembly of its genome. To explore the utility of ancestral diploid species of polyploid wheat, sequence variation of T. urartu (AuAu) was analyzed by comparing its 277-kb large genomic region carrying the important Glu-1 locus with the homologous regions from the A genomes of the diploid T. monococcum (AmAm), tetraploid T. turgidum (AABB), and hexaploid T. aestivum (AABBDD). Our results revealed that in addition to a high degree of the gene collinearity, nested retroelement structures were also considerably conserved among the Au genome and the A genomes in polyploid wheats, suggesting that the majority of the repetitive sequences in the A genomes of polyploid wheats originated from the diploid Au genome. The difference in the compared region between Au and A is mainly caused by four differential TE insertion and two deletion events between these genomes. The estimated divergence time of A genomes calculated on nucleotide substitution rate in both shared TEs and collinear genes further supports the closer evolutionary relationship of A to Au than to Am. The structure conservation in the repetitive regions promoted us to develop repeat junction markers based on the Au sequence for mapping the A genome in hexaploid wheat. Eighty percent of these repeat junction markers were successfully mapped to the corresponding region in hexaploid wheat, suggesting that T. urartu could serve as a useful resource for developing molecular markers for genetic and breeding studies in hexaploid wheat.  相似文献   

18.
M. Feldman  B. Liu  G. Segal  S. Abbo  A. A. Levy    J. M. Vega 《Genetics》1997,147(3):1381-1387
To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat.  相似文献   

19.
20.
Protein inhibitors extracted with water from seeds of Triticum and genetically related species were characterized according to their apparent molecular weights, electrophoretic mobilities and their specificities in inhibiting α-amylases from human saliva and Tenebrio molitor L. larvae. No detectable amylase inhibition activity was found in extracts from diploid wheats, whereas in all tetraploid and hexaploid wheats as well as in the Aegilops species tested we found several amylase inhibitor groups of different molecular weights. In each group, several inhibitor components slightly different in their electrophoretic mobilities, but identical in their inhibition behaviour toward amylases from different origins have been shown. Both from the qualitative and quantitative standpoints, amylase protein inhibitors from hexaploid wheats were the summation of those from tetraploid wheats plus the ones from Aegilops squarrosa. Amylase inhibitors from Aegilops speltoides largely differed from those extracted from tetraploid wheats as well as from all the amylase inhibitors described in plant seeds up to now. These results indicate a relevant homology between the amylase inhibitor coding genes of the D wheat genome and those of the D Aegilops genome and confirm that Ae. squarrosa is the donor of the whole D genome to hexaploid wheats. They also suggest that Ae. speltoides is not the donor of the B genome to polyploid wheats, although a not yet identified Aegilops species might be such a donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号