首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aqueous methanolic extract of the aerial parts of Fagonia arabica L. (family Zygophyllaceae) was successively fractionated using certain organic solvents. From the ethyl acetate fraction, two flavonoid glycosides were isolated and identified as kaempferol-7-O-rhamnoside and acacetin-7-O-rhamnoside. Four triterpenoidal glycosides were isolated from the butanolic layer. Their structures were elucidated on the basis of the spectral and chemical data as 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranoside oleanolic acid (1), 3-O-alpha-L-arabinopyranosyl quinovic acid 28-O-beta-D-glucopyranoside (2), 3-O-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinosyl oleanolic acid (3) and 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabino-pyranosyl quinovic acid 28-O-beta-D-glucopyranoside (4). The two monodesmosidic saponins 1 and 3 were found to possess strong molluscicidal activity against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni in Egypt (LC90 = 13.33 and 16.44 microM), whereas the other two bidesmosidic saponins 2 and 4 as well as the two flavonoid glycosides were inactive up to 50 microM.  相似文献   

2.
A novel O-methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to the 8-hydroxyl group of flavonols was purified about 1200-fold from Lotus flower buds, by precipitation with ammonium sulfate and successive chromatography on columns of Sephadex G-100, S-adenosyl-L-homocysteine--Agarose, hydroxyapatite and Polybuffer ion exchanger. The enzyme exhibited strict specificity for position 8 of 8-hydroxyquercetin and 8-hydroxykaempferol, a pH optimum at 7.9, a pI value of 5.5, an Mr of 55 X 10(3) and required Mg2+ and SH groups for activity. The Km values for 8-hydroxykaempferol and S-adenosyl-L-methionine were 1.3 microM and 53 microM, respectively. The data obtained from substrate interaction and product inhibition studies are expected for a steady-state ordered bi-bi mechanism, with 8-hydroxyflavonol binding before S-adenosyl-L-methionine followed by the release of S-adenosyl-L-homocysteine and 8-methoxyflavonol. An alternative mechanism that may also fit the data is the mono-iso Theorell-Chance with the inverse binding sequence and an isomerization step of the free enzyme.  相似文献   

3.
Kranz K  Petersen M 《Phytochemistry》2003,64(2):453-458
S-Adenosyl-L-methionine:beta-peltatin 6-O-methyltransferase was isolated and characterized from cell suspension cultures of Linum nodiflorum L. (Linaceae), a Linum species accumulating aryltetralin lignans such as 6-methoxypodophyllotoxin. The enzyme transfers a methyl group from S-adenosyl-L-methionine to the only free OH-group of beta-peltatin in position 6 thus forming beta-peltatin-A methylether. This reaction is a putative biosynthetic step in the biosynthesis of 6-methoxypodophyllotoxin from deoxypodophyllotoxin. The enzyme has a pH-optimum at pH 7.7 and a temperature optimum at 40 degrees C. The enzyme activity is strongly inhibited by MnSO(4), FeCl(3), FeSO(4) and ZnSO(4) as well as S-adenosyl-homocysteine. Mg(2+) and EDTA did not influence the methylation of beta-peltatin. Substrate saturation curves were obtained for S-adenosyl-methionine and beta-peltatin and apparent K(m)-values of 15 microM and 40 microM, respectively, were determined for these substrates. Substrate inhibition was observed for beta-peltatin. No other lignan substrate tested nor caffeic acid were accepted. The suspension cell line of Linum nodiflorum was characterized with respect to growth, medium alterations and lignan production as well as activity of SAM:beta-peltatin 6-O-methyltransferase. Highest specific activities of beta-peltatin 6-O-methyltransferase were determined on day 7 of the culture period corresponding to the highest levels of 6-methoxypodophyllotoxin on days 7 to 12.  相似文献   

4.
An isoflavone 5-O-methyltransferase was partially purified from the roots of yellow lupin (Lupinus luteus) by fractional precipitation with ammonium sulfate, followed by gel filtration and ion-exchange chromatography using a fast-protein liquid chromatography system. This enzyme, which was purified 810-fold, catalyzed position-specific methylation of the 5-hydroxyl group of a number of substituted isoflavones. The methyltransferase had a pH optimum of 7 in phosphate buffer, an apparent pI of 5.2, a molecular weight of 55,000, no requirement for Mg2+, and was inhibited by various SH-group reagents. Substrate interaction kinetics of the isoflavonoid substrate and S-adenosyl-L-methionine gave converging lines which were consistent with a sequential bireactant binding mechanism. Furthermore, product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and noncompetitive inhibition between the isoflavone and either S-adenosyl-L-homocysteine or the 5-O-methylisoflavone. The kinetic patterns obtained were consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind to the enzyme and S-adenosyl-L-homocysteine is the final product released. The physiological role of this enzyme is discussed in relation to the biosynthesis of 5-O-methylisoflavones of this tissue.  相似文献   

5.
The enzyme BchM (S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase) from Rhodobacter capsulatus catalyses an intermediate reaction in the bacteriochlorophyll biosynthetic pathway. Overexpression of His(6)-tagged protein in Escherichia coli resulted in the majority of polypeptide existing as inclusion bodies. Purification from inclusion bodies was performed using metal-affinity chromatography after an elaborate wash step involving surfactant polysorbate-20. Initial enzymatic assays involved an in situ generation of S-adenosyl-L-methionine substrate using a crude preparation of S-adenosyl-L-methionine synthetase and this resulted in higher enzymatic activity compared with commercial S-adenosyl-L-methionine. A heat-stable stimulatory component present in the S-adenosyl-L-methionine synthetase was found to be a phospholipid, which increased enzymatic activity 3-4-fold. Purified phospholipids also stabilized enzymatic activity and caused a disaggregation of the protein to lower molecular mass forms, which ranged from monomeric to multimeric species as determined by size-exclusion chromatography. There was no stimulatory effect observed with magnesium-chelatase subunits on methyltransferase activity using His-BchM that had been stabilized with phospholipids. Substrate specificity of the enzyme was limited to 5-co-ordinate square-pyramidal metalloporphyrins, with magnesium-protoporphyrin IX being the superior substrate followed by zinc-protoporphyrin IX and magnesium-deuteroporphyrin. Kinetic analysis indicated a random sequential reaction mechanism. Three non-substrate metalloporphyrins acted as inhibitors with different modes of inhibition exhibited with manganese III-protoporphyrin IX (non-competitive or uncompetitive) compared with cobalt II-protoporphyrin IX (competitive).  相似文献   

6.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

7.
S-Adenosyl-L-methionine:uroporphyrinogen III methyltransferase (SUMT), the enzyme of the cobalamin biosynthetic pathway which catalyzes C methylation of uroporphyrinogen III, was purified about 150-fold to homogeneity from extracts of a recombinant strain of Pseudomonas denitrificans derived from a cobalamin-overproducing strain by ammonium sulfate fractionation, anion-exchange chromatography, and hydroxyapatite chromatography. The purified protein has an isoelectric point of 6.4 and molecular weights of 56,500 as estimated by gel filtration and 30,000 as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme is a homodimer. It does not contain a chromophoric prosthetic group and does not seem to require metal ions or cofactors for activity. SUMT catalyzes the two successive C-2 and C-7 methylation reactions involved in the conversion of uroporphyrinogen III to precorrin-2 via the intermediate formation of precorrin-1. In vitro studies suggest that the intermediate monomethylated product (precorrin-1) is released from the protein and then added back to the enzyme for the second C-methylation reaction. The pH optimum was 7.7, the Km values for S-adenosyl-L-methionine and uroporphyrinogen III were 6.3 and 1.0 microM, respectively, and the turnover number was 38 h-1. The enzyme activity was shown to be completely insensitive to feedback inhibition by cobalamin and corrinoid intermediates tested at physiological concentration. At uroporphyrinogen III concentrations above 2 microM, SUMT exhibited a substrate inhibition phenomenon. It is suggested that this property might play a regulatory role in cobalamin biosynthesis in the cobalamin-overproducing strain studied.  相似文献   

8.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

9.
A soluble (100,000 x g supernatant) methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to catechols was present in cell extracts of Streptomyces griseus. A simple, general, and rapid catechol-based assay method was devised for enzyme purification and characterization. The enzyme was purified 141-fold by precipitation with ammonium sulfate and successive chromatography over columns of DEAE-cellulose, DEAE-Sepharose, and Sephacryl S-200. The purified cytoplasmic enzyme required 10 mM magnesium for maximal activity and was catalytically optimal at pH 7. 5 and 35 degrees C. The methyltransferase had an apparent molecular mass of 36 kDa for both the native and denatured protein, with a pI of 4.4. Novel N-terminal and internal amino acid sequences were determined as DFVLDNEGNPLENNGGYXYI and RPDFXLEPPYTGPXKARIIRYFY, respectively. For this enzyme, the K(m) for 6,7-dihydroxycoumarin was 500 +/- 21.5 microM, and that for S-adenosyl-L-methionine was 600 +/- 32.5 microM. Catechol, caffeic acid, and 4-nitrocatechol were methyltransferase substrates. Homocysteine was a competitive inhibitor of S-adenosyl-L-methionine, with a K(i) of 224 +/- 20.6 microM. Sinefungin and S-adenosylhomocysteine inhibited methylation, and the enzyme was inactivated by Hg(2+), p-chloromercuribenzoic acid, and N-ethylmaleimide.  相似文献   

10.
Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations.  相似文献   

11.
Histamine N-methyltransferase (HMT, EC 2.1.1.8) was purified 8,420-fold in 44% yield from rat kidney. The basic steps in the purification included differential centrifugation, calcium phosphate adsorption, DEAE cellulose chromatography, and affinity chromatography on an S-adenosylhomocysteine-agarose matrix. The resulting protein was homogeneous as determined by gel electrophoresis and was stable for at least five months at -80 degrees C. The apparent molecular weight of the enzyme was found to be 31,500 as determined by gel filtration through Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was determined to be 5.4. The Km's for histamine and S-adenosyl-L-methionine were 12.4 +/- 1.3 microM and 10.2 +/- 0.5 microM, respectively. When S-adenosyl-L-methionine was the variable substrate, the Ki's for S-adenosyl-L-homocysteine and S-adenosyl-D-homocysteine were 31.9 +/- 3.4 microM and 32.0 +/- 3.5 microM, respectively. When histamine was the variable substrate, the Ki for S-adenosyl-L-homocysteine was 11.8 +/- 0.6 microM. Comparison of physico-chemical and catalytic properties of the rat kidney and the guinea pig enzymes suggest that these proteins have similar structural and catalytic characteristics.  相似文献   

12.
Cytosolic protein-O-carboxylmethyltransferase was purified more than 4,000-fold in specific activity and membrane-associated protein-O-carboxylmethyltransferase carboxymethylase about 900-fold from chicken erythrocytes by use of a combination of affinity chromatography on immobilized S-adenosyl-L-homocysteine and gel filtration on Sephacryl S-200 (Pharmacia), together with 3-((3-cholamidopropyl)-dimethylammonio)-1-propane-sulfonate as a detergent to solubilize the membrane-associated enzyme. The two enzymes were characterized by examining the dependence of their activity on pH and on concentration of S-adenosyl-L-methionine using fetuin as an exogenous methyl-acceptor substrate, and were found to differ somewhat. The cytosolic enzyme had a pH optimum of 6.0 with an apparent Km value of 2.1 microM for S-adenosyl-L-methionine, whereas corresponding values for the membrane-associated enzyme were 6.5 and 0.71 microM. This report deals with the biochemical differences between purified cytosolic and membrane-associated protein carboxymethylase from the same cell source.  相似文献   

13.
S-Adenosyl-L-methionine:benzoic acid carboxyl methyltransferase (BAMT) catalyzes the transfer of the methyl group of S-adenosyl-L-methionine (SAM) to the carboxyl group of benzoic acid to make the volatile ester methyl benzoate, one of the most abundant scent compounds of snapdragon, Antirrhinum majus. The enzyme was purified from upper and lower petal lobes of 5- to 10-day-old snapdragon flowers using DE53 anion exchange, Phenyl-Sepharose 6FF, and Mono-Q chromatography. The purified protein has a pH optimum of 7.5 and is highly specific for benzoic acid, with no activity toward several other naturally occurring substrates such as salicylic acid, cinnamic acid, and their derivatives. The molecular mass values for native and denatured protein were 100 and 49 kDa, respectively, suggesting that the active enzyme is a homodimer. The addition of monovalent cations K+ and NH4+ stimulates BAMT activity by a factor of 2, whereas the addition of Fe2+ and Cu2+ has a strong inhibitory effect. Plant-purified BAMT has Km values of 28 microM and 1.1 mM for SAM and benzoic acid, respectively (87 microM and 1.6 mM, respectively, for plant BAMT expressed in Escherichia coli). Product inhibition studies showed competitive inhibition between SAM and S-adenosyl-L-homocysteine (SAH), with a Ki of 7 microM, and noncompetitive inhibition between benzoic acid and SAH, with a Ki of 14 microM.  相似文献   

14.
The role of chalcone synthase in the regulation of flavonoid biosynthesis during organogenesis of oat primary leaves has been investigated at the level of enzyme activity and mRNA translation in vitro. Chalcone synthase was purified about 500-fold. The apparent Km values were 1.5 and 6.3 microM for 4-coumaroyl-CoA and malonyl-CoA, respectively. The end products of oat flavonoid biosynthesis, three C-glucosylflavones, did not inhibit the reaction at concentrations as measured up to 60 microM each. Apigenin (4',5,7-trihydroxyflavone), a stable structural analog of the reaction product, 2',4,4',6'-tetrahydroxychalcone, was found to be a strong competitive inhibitor of 4-coumaroyl-CoA binding and a strong noncompetitive inhibitor of malonyl-CoA binding. Although apigenin is not supposed to be an intermediate of C-glucosylflavone biosynthesis, this compound might be a valuable tool for future kinetic studies. To date, there is no indication of chalcone synthase regulation by feedback or similar mechanisms which modulate enzyme activity. Mathematical correlation of chalcone synthase activity and flavonoid accumulation during leaf development, however, indicates that chalcone synthase is the rate-limiting enzyme of the pathway. By in vitro translation studies using preparations of total RNA from different leaf stages, we could demonstrate for the first time that the translational activity of chalcone synthase mRNA undergoes marked daily changes. The high values found at the end of the dark phase suggest that light does not exert direct influence on flavonoid biosynthesis but probably functions by controlling the basic diurnal rhythm.  相似文献   

15.
16.
A 2-oxoglutarate-dependent dioxygenase [EC 1.14.11-] that catalyzes the 6-hydroxylation of partially methylated flavonols has been purified to near homogeneity from Chrysosplenium americanum. Enzyme purification was achieved by fast protein liquid chromatography on Superose 12 and Mono Q columns as well as by affinity chromatography on 2-oxoglutarate-Sepharose and immunoaffinity columns. The specific activity of the 6-hydroxylase eluted from Mono Q (97.1 pkat/mg) was enriched 538-fold, with a 0.63% recovery. Both affinity chromatography steps resulted in the elimination of most contaminating proteins, but not without loss of enzyme activity and stability. The molecular mass of both the native and denatured enzyme was found to be 42 and 45 kDa, respectively, suggesting a monomeric protein. The enzyme exhibits strict specificity for position 6 of partially methylated flavonols possessing a 7-methoxyl group, indicating its involvement in the biosynthesis of polymethylated flavonols in this plant. The cofactor dependence of the enzyme is similar to that of other plant dioxygenases, particularly its dependence on ferrous ions for catalytic activity and reactivation. Internal amino acid sequence information indicated its relatedness to other plant flavonoid dioxygenases. The results of substrate interaction kinetics and product inhibition studies suggest an ordered, sequential reaction mechanism (TerTer), where 2-oxoglutarate is the first substrate to bind, followed by O2 and the flavonol substrate. Product release occurs in the reverse order where the hydroxylated flavonol is the first to be released, followed by CO2 and succinate. To our knowledge, this is the first reported 2-oxoglutarate-dependent dioxygenase that catalyzes the aromatic hydroxylation of a flavonoid compound.  相似文献   

17.
S-adenosyl-L-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'-OMT) catalyzes the conversion of 3'-hydroxy-N-methylcoclaurine to reticuline, an important intermediate in synthesizing isoquinoline alkaloids. In an earlier step in the biosynthetic pathway to reticuline, another O-methyltransferase, S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase (6-OMT), catalyzes methylation of the 6-hydroxyl group of norcoclaurine. We isolated two kinds of cDNA clones that correspond to the internal amino acid sequences of a 6-OMT/4'-OMT preparation from cultured Coptis japonica cells. Heterologously expressed proteins had 6-OMT or 4'-OMT activities, indicative that each cDNA encodes a different enzyme. 4'-OMT was purified using recombinant protein, and its enzymological properties were characterized. It had enzymological characteristics similar to those of 6-OMT; the active enzyme was the dimer of the subunit, no divalent cations were required for activity, and there was inhibition by Fe(2+), Cu(2+), Co(2+), Zn(2+), or Ni(2+), but none by the SH reagent. 4'-OMT clearly had different substrate specificity. It methylated (R,S)-6-O-methylnorlaudanosoline, as well as (R, S)-laudanosoline and (R,S)-norlaudanosoline. Laudanosoline, an N-methylated substrate, was a much better substrate for 4'-OMT than norlaudanosoline. 6-OMT methylated norlaudanosoline and laudanosoline equally. Further characterization of the substrate saturation and product inhibition kinetics indicated that 4'-OMT follows an ordered Bi Bi mechanism, whereas 6-OMT follows a Ping-Pong Bi Bi mechanism. The molecular evolution of these two related O-methyltransferases is discussed.  相似文献   

18.
We describe the molecular and functional characterization of three closely related S-adenosyl-L-methionine synthetase (SAMS) isoenzymes from Catharanthus roseus (Madagascar periwinkle). The genes are differentially expressed in cell cultures during growth of the culture and after application of various stresses (elicitor, nutritional down-shift, increased NaCl). Seedlings revealed organ-specific expression and differential gene regulation after salt stress. A relationship analysis indicated that plant SAMS group in two main clusters distinguished by characteristic amino acid exchanges at specific positions, and this suggested differences in the enzyme properties or the regulation. SAMS1 and SAMS2 are of type I and SAMS3 is of type II. The properties of the isoenzymes were compared after heterologous expression of the individual enzymes, but no significant differences were detected in a) optima for temperature (37 to 45 °C) or pH (7 to 8.3); b) dependence on cations (divalent: Mg2+, Mn2+, Co2+; monovalent: K+, , Na+); c) Kms for ATP and L-methionine; d) inhibition by reaction products (S-adenosyl-L-methionine, PPi, Pi), by the reaction intermediate tripolyphosphate, and by the substrate analogues ethionine and cycloleucine; e) response to metabolites from the methyl cycle (L-homocysteine) or from related pathways (L-ornithine, putrescine, spermidine, spermine); f) native protein size (gel permeation chromatography). The results represent the first characterization of plant SAMS isoenzyme properties with individually expressed proteins. The possibility is discussed that the isoenzyme differences reflect specificities in the association with enzymes that use S-adenosyl-L-methionine.  相似文献   

19.
The isolation and characterization of a flavanone-specific 7-O-glucosyltransferase and its resolution from other glucosyltransferases in Citrus paradisi (grapefruit) seedlings is described. This new enzyme in the subclass 2.4.1 catalyzes the glucosylation of the 7-OH group of naringenin (4',5',7-trihydroxyflavanone) to prunin and has been purified (943-fold) by fractional precipitation with ammonium sulfate and successive chromatography on Sephadex G-100, hydroxyapatite, UDP-glucuronic acid agarose, Mono Q, and Mono P columns. It has a pH optimum of 7.5-8.0, an apparent pI of 4.3, and an apparent Mr of 54,900. This glucosyltransferase has an expressed specificity for the 7-position of the flavanones naringenin (Kmapp 62 microM; Kmapp UDPG 51 microM) and hesperetin (Kmapp 124 microM; Kmapp UDPG 243 microM) and did not accept other flavone or flavonol aglycones. Characteristics of other flavonoid glucosyltransferase activities found in grapefruit seedlings are also described.  相似文献   

20.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the 5'-GGATCC recognition site catalyzed by the DNA-[N4-cytosine]-methyltransferase from Bacillus amyloliquefaciens [EC 2.1.1.113] has shown that the dependence of the rate of methylation of the 20-meric substrate duplex on SAM and DNA concentration are normally hyperbolic, and the maximal rate is attained upon enzyme saturation with both substrates. No substrate inhibition is observed even at concentrations many times higher than the Km values (0.107 microM for DNA and 1.45 microM for SAM), which means that no nonreactive enzyme-substrate complexes are formed during the reaction. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAM decreases DNA decreases metDNA increases SAH increases (S-adenosyl-L-homocysteine). However, more detailed numerical analysis of the aggregate experimental data admits an alternative order of substrate binding, DNA decreases SAM decreases, though this route is an order of magnitude slower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号