首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling.  相似文献   

3.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

4.
用GAs处理禾谷类糊粉细胞原生质体后,可以诱导α_淀粉酶的合成与分泌。ABA抑制GAs的诱导作用并可刺激ABA诱导蛋白的产生。GAs和ABA的受体位于质膜上。最近的研究表明:G蛋白、cGMP、Ca2+和钙调素、三磷酸肌醇(IP3)及蛋白质磷酸酶(PP1和PP2A)都不同程度的参与了GA响应的信号传导过程。已克隆出一些可在转录水平上调节GA诱导基因的顺反子,并证明它们在禾谷类糊粉细胞中的GA响应事件中起至关重要的作用。有证据表明GA在α 淀粉酶的转录后水平的调节上也有作用。  相似文献   

5.
Gilroy S  Jones RL 《Plant physiology》1994,104(4):1185-1192
The response of protoplasts isolated from aleurone layers of barley (Hordeum vulgare L. cv Himalaya) to internally and externally applied hormone was analyzed to localize the site of perception of the hormonal signal. Protoplasts responded to externally applied gibberellic acid (GA3) with increased synthesis and secretion of [alpha]-amylase, transient expression of the glucuronidase reporter gene fused to the hormone-responsive elements of the [alpha]-amylase promoter, and the vacuolation typical of GA3-treated aleurone cells. When up to 250 [mu]M GA3 was microinjected into the protoplast cytoplasm, none of these responses were observed. This did not reflect damage to the protoplasts during the microinjection procedure, since microinjected protoplasts remained responsive to externally applied hormone. Nor did it reflect loss of microinjected GA3 from the protoplast, since 50% of microinjected [3H]GA20 was retained by protoplasts for at least 24 h. Externally applied abscisic acid (ABA) could reverse the stimulation of [alpha]-amylase synthesis and secretion, whereas microinjecting up to 250 [mu]M ABA was ineffective at antagonizing the stimulatory effect of GA3. These results suggest that the site of perception of GA3 and ABA in the barley aleurone protoplast is on the external face of the plasma membrane.  相似文献   

6.
Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.  相似文献   

7.
1. Catecholamine secretion from digitonin-treated chromaffin cells is stimulated directly by micromolar Ca2+ in the medium. The permeabilized cells are leaky to proteins. 2. In this study trypsin (30-50 micrograms/ml) added to cells after digitonin treatment completely inhibited subsequent Ca2+-dependent catecholamine secretion. The same concentrations of trypsin did not inhibit secretion from permeabilized cells if trypsin was present only prior to cell permeabilization. 3. The data indicate that trypsin entered digitonin-treated chromaffin cells which were capable of undergoing secretion and that an intracellular, trypsin-sensitive protein is involved in secretion. Chymotrypsin was less potent but had effects similar to those of trypsin. 4. The enhancement of Ca2+-dependent secretion from permeabilized chromaffin cells induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was inhibited by trypsin added simultaneously with Ca2+ to permeabilized cells at concentrations (3-10 micrograms/ml) which had little or no effect on Ca2+-dependent secretion from cells untreated with TPA. Ca2+-dependent secretion in TPA-treated cells was reduced by trypsin only to the level that would have occurred in cells not treated with TPA. Trypsin reduced the large TPA-induced increment of membrane-bound protein kinase C.  相似文献   

8.
In bovine adrenal chromaffin cells nicotinic stimulation or a depolarizing concentration of K+ caused a rapid, transient translocation to membranes of as much as 14% of the total cellular protein kinase C activity. The quantitative relationship between membrane-bound protein kinase C and Ca2+-dependent secretion was determined in cells rendered leaky by digitonin treatment. Intact cells were incubated with various concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA) to activate and cause translocation of protein kinase C to membrane before permeabilization in the presence of Ca2+. For the same amount of membrane-bound protein kinase C, a similar degree of enhancement of Ca2+-dependent secretion occurred in cells incubated for 1 or 30 min with TPA. Translocation of as little as 2-3% of the cellular protein kinase C to the membrane enhanced Ca2+-dependent secretion by 25-30%. Muscarinic agonists caused a 5% increase in membrane-bound protein kinase C at 2 s which rapidly reversed. Nicotinic and muscarinic receptor-mediated increases in membrane-bound protein kinase C were additive at 10 s and synergistic at 3 min. Muscarinic stimulation enhanced nicotinic receptor-dependent secretion. Prior incubation with TPA caused a similar enhancement of nicotinic-mediated secretion. The data indicate that protein kinase C which is translocated within seconds of stimulation of the cells with a nicotinic agonist or elevated K+ probably enhances the secretory response immediately or soon after exocytosis begins. In addition, the muscarinic receptor-mediated enhancement of nicotinic receptor-stimulated secretion may be due to newly activated protein kinase C.  相似文献   

9.
Gibberellin and abscisic acid signalling in aleurone   总被引:1,自引:0,他引:1  
  相似文献   

10.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

11.
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.  相似文献   

12.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

13.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of gonadotropin releasing hormone (GnRH) and phorbol esters in cultured pituitary cells. During incubation in normal medium, GnRH stimulated LH release with an ED50 of 0.35 nM. Incubation in Ca2+-deficient medium (Ca2+-free, 10 microM) substantially decreased but did not abolish the LH responses to GnRH. The extracellular Ca2+-dependent component of GnRH action could be mimicked by high K+ concentrations, consistent with the presence of voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs. Ca2+ channel agonist (Bay K 8644) and antagonist (nifedipine) analogs, respectively, enhanced or partially inhibited LH responses to GnRH and also to K+, the latter confirming the participation of two types of VSCC (dihydropyridine-sensitive and -insensitive) in K+-induced secretion. Phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA), 4 beta-phorbol-12,13-dibenzoate, and 4 beta-phorbol-12,13-diacetate, stimulated LH release with ED50s of 5, 10, and 1000 nM, respectively, and with about 70% of the efficacy of GnRH. Phorbol ester-stimulated LH secretion was decreased but not abolished by progressive reduction of [Ca2+]e in the incubation medium, and the residual LH response was identical with that elicited by GnRH in Ca2+-deficient medium. TPA increased [Ca2+]i to a peak after 20 s in normal medium but not in the absence of extracellular Ca2+, indicating that protein kinase C (Ca2+/phospholipid-dependent enzyme) promotes calcium entry but can also mediate secretory responses without changes in calcium influx and [Ca2+]i. The extracellular Ca2+-dependent action of TPA on LH release was blocked by Co2+. However, nifedipine did not alter TPA action on [Ca2+]i and LH release. These observations indicate that protein kinase C can participate in GnRH-induced LH release that is independent of Ca2+ entry, but also promotes the influx of extracellular Ca2+ through dihydropyridine-insensitive Ca2+-channels.  相似文献   

14.
15.
Pharmacological agents were used to investigate the possible involvement of actin in signalling chains associated with abscisic acid (ABA)-induced ion release from the guard cell vacuole, a process which is absolutely essential for stomatal closure. Effects on the ABA-induced transient stimulation of tonoplast efflux were measured, using (86)Rb in isolated guard cells of Commelina communis, together with effects on stomatal apertures. In the response to 10 microm ABA (triggered by Ca(2+) influx rather than internal Ca(2+) release), jasplakinolide (stabilizing actin filaments) and latrunculin B (depolymerizing actin filaments) had opposite effects. Both closure and the vacuolar efflux transient were inhibited by jasplakinolide but enhanced by latrunculin B. At 10 microm ABA prevention of mitogen-activated protein (MAP) kinase activation by PD98059 partially inhibited closure and reduced the efflux transient. By contrast, latrunculin B inhibited the efflux transient at 0.1 microm ABA (involving internal Ca(2+) release rather than Ca(2+) influx). The results suggest that 10 microm ABA activates Ca(2+)-dependent vacuolar ion efflux via a Ca(2+)-permeable influx channel which is maintained closed by interaction with F-actin. A MAP kinase is also involved, in a chain similar to that postulated for Ca(2+)-dependent gene expression in cold acclimation.  相似文献   

16.
The putative two-pore Ca(2+) channel TPC1 has been suggested to be involved in responses to abiotic and biotic stresses. We show that AtTPC1 co-localizes with the K(+)-selective channel AtTPK1 in the vacuolar membrane. Loss of AtTPC1 abolished Ca(2+)-activated slow vacuolar (SV) currents, which were increased in AtTPC1-over-expressing Arabidopsis compared to the wild-type. A Ca(2+)-insensitive vacuolar cation channel, as yet uncharacterized, could be resolved in tpc1-2 knockout plants. The kinetics of ABA- and CO(2)-induced stomatal closure were similar in wild-type and tpc1-2 knockout plants, excluding a role of SV channels in guard-cell signalling in response to these physiological stimuli. ABA-, K(+)-, and Ca(2+)-dependent root growth phenotypes were not changed in tpc1-2 compared to wild-type plants. Given the permeability of SV channels to mono- and divalent cations, the question arises as to whether TPC1 in vivo represents a pathway for Ca(2+) entry into the cytosol. Ca(2+) responses as measured in aequorin-expressing wild-type, tpc1-2 knockout and TPC1-over-expressing plants disprove a contribution of TPC1 to any of the stimulus-induced Ca(2+) signals tested, including abiotic stresses (cold, hyperosmotic, salt and oxidative), elevation in extracellular Ca(2+) concentration and biotic factors (elf18, flg22). In good agreement, stimulus- and Ca(2+)-dependent gene activation was not affected by alterations in TPC1 expression. Together with our finding that the loss of TPC1 did not change the activity of hyperpolarization-activated Ca(2+)-permeable channels in the plasma membrane, we conclude that TPC1, under physiological conditions, functions as a vacuolar cation channel without a major impact on cytosolic Ca(2+) homeostasis.  相似文献   

17.
Changes in cellular or subcellular Ca2+ concentrations play essential roles in plant development and in the responses of plants to their environment. However, the mechanisms through which Ca2+ acts, the downstream signaling components, as well as the relationships among the various Ca2+-dependent processes remain largely unknown. Using an RNA interference-based screen for gene function in Medicago truncatula, we identified a gene that is involved in root development. Silencing Ca2+-dependent protein kinase1 (CDPK1), which is predicted to encode a Ca2+-dependent protein kinase, resulted in significantly reduced root hair and root cell lengths. Inactivation of CDPK1 is also associated with significant diminution of both rhizobial and mycorrhizal symbiotic colonization. Additionally, microarray analysis revealed that silencing CDPK1 alters cell wall and defense-related gene expression. We propose that M. truncatula CDPK1 is a key component of one or more signaling pathways that directly or indirectly modulates cell expansion or cell wall synthesis, possibly altering defense gene expression and symbiotic interactions.  相似文献   

18.
The study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. The short-circuit current (ISC) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The ISC responses induced by the Ca2+-mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced ISC in CFPAC-1 cells and the ionomycin-induced ISC in CAPAN-1 cells. An inactive form of PMA, 4alphad-phorbol 12, 13-didecanote (4alphaD), was found to exert insignificant effect on the agonist-induced ISC, indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment Ca2+-activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC.  相似文献   

19.
The early events related to intracellular GA-signals in aleurone are not clearly established. We demonstrate that GA treatment induced increases in phosphatidylinositol 4P, 5-kinase (PtdInsP-k), diacylglycerol kinase (DAG-k) and phosphatidate kinase (PA-k) activities in barley aleurone within 5 min. The response to GA was also observed as a rapid and transient InsPs/InsP 3 time-dependent accumulation. U73122, a phospholipase C (PLC) inhibitor, reduced the InsPs and InsP 3 levels and amylase secretion. The G protein activator Mas7 was able to trigger the -amylase secretion as strongly as GA did; U73122, also reduced this effect. ABA evoked only an increase in phosphatidic acid (PtdOH) and diacylglycerol pyrophosphate (DGPP) levels. This is the first time that a rapid and transient response to GA in correlation with amylase secretion, involving PLC and G protein as well as PA-k activity in the GA signalling pathway, has been demonstrated in aleurone cells.  相似文献   

20.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号