首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic processes accompanying conscious and unconscious anxiety states in patients with multiple sclerosis were studied. The correspondence between glucose metabolism rates (evaluated using positron emission tomography images) and indices of conscious and unconscious anxiety (according to the Taylor and Luscher test scores) was estimated. Data on the specific features of brain activity at various levels of conscious and unconscious anxiety were obtained. The elevation of conscious anxiety was accompanied by an increase in the metabolic activity of the left-hemisphere cortical and subcortical structures, as well as by a decrease in the glucose metabolism rate in the majority of right-hemisphere structures (except limbic and thalamic structures). The elevation of unconscious anxiety was accompanied by a decrease in the rate of glucose metabolism in the left frontal structures, whereas in the amygdala, as well as in the other limbic structures (gyrus temporalis inferior), its rate increased.  相似文献   

2.
Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.  相似文献   

3.
The cognitive signature of unconscious processes is hotly debated recently. Generally, consciousness is thought to mediate flexible, adaptive and goal-directed behavior, but in the last decade unconscious processing has rapidly gained ground on traditional conscious territory. In this study we demonstrate that the scope and impact of unconscious information on behavior and brain activity can be modulated dynamically on a trial-by-trial basis. Participants performed a Go/No-Go experiment in which an unconscious (masked) stimulus preceding a conscious target could be associated with either a Go or No-Go response. Importantly, the mapping of stimuli onto these actions varied on a trial-by-trial basis, preventing the formation of stable associations and hence the possibility that unconscious stimuli automatically activate these control actions. By eliminating stimulus-response associations established through practice we demonstrate that unconscious information can be processed in a flexible and adaptive manner. In this experiment we show that the same unconscious stimulus can have a substantially different effect on behavior and (prefrontal) brain activity depending on the rapidly changing task context in which it is presented. This work suggests that unconscious information processing shares many sophisticated characteristics (including flexibility and context-specificity) with its conscious counterpart.  相似文献   

4.
Attentional selection plays a critical role in conscious perception. When attention is diverted, even salient stimuli fail to reach visual awareness. Attention can be voluntarily directed to a spatial location or a visual feature for facilitating the processing of information relevant to current goals. In everyday situations, attention and awareness are tightly coupled. This has led some to suggest that attention and awareness might be based on a common neural foundation, whereas others argue that they are mediated by distinct mechanisms. A body of evidence shows that visual stimuli can be processed at multiple stages of the visual-processing streams without evoking visual awareness. To illuminate the relationship between visual attention and conscious perception, we investigated whether top-down attention can target and modulate the neural representations of unconsciously processed visual stimuli. Our experiments show that spatial attention can target only consciously perceived stimuli, whereas feature-based attention can modulate the processing of invisible stimuli. The attentional modulation of unconscious signals implies that attention and awareness can be dissociated, challenging a simplistic view of the boundary between conscious and unconscious visual processing.  相似文献   

5.
The amygdala is a core component of neural circuits that mediate processing of emotional, particularly anxiety and fear-related stimuli across species. In addition, the nuclear complex plays a key role in the central nervous system stress response, and alterations in amygdala responsivity are found in neuropsychiatric disorders, especially those precipitated or sustained by stressors. Serotonin has been shown to shape and fine-tune neural plasticity in development and adulthood, thereby allowing for network flexibility and adaptive capacity in response to environmental challenges, and is implicated in the modulation of stimulus processing and stress sensitivity in the amygdala. The fact that altered amygdala activity patterns are observed upon pharmacological manipulations of serotonergic transmission, as well as in carriers of genetic variations in serotonin pathway-associated signaling molecules representing risk factors for neuropsychiatric disorders, underlines the importance of understanding the role and mode of action of serotonergic transmission in the amygdala for human psychopathology. Here, we present a short overview over organizational principles of the amygdala in rodents, non-human primates and humans, and review findings on the origin, morphology, and targets of serotonergic innervation, the distribution patterns and cellular expression of serotonin receptors, and the consequences of stress and pharmacological manipulations of serotonergic transmission in the amygdala, focusing particularly on the extensively studied basolateral complex and central nucleus.  相似文献   

6.
Critchley HD  Mathias CJ  Dolan RJ 《Neuron》2002,33(4):653-663
The degree to which perceptual awareness of threat stimuli and bodily states of arousal modulates neural activity associated with fear conditioning is unknown. We used functional magnetic neuroimaging (fMRI) to study healthy subjects and patients with peripheral autonomic denervation to examine how the expression of conditioning-related activity is modulated by stimulus awareness and autonomic arousal. In controls, enhanced amygdala activity was evident during conditioning to both "seen" (unmasked) and "unseen" (backward masked) stimuli, whereas insula activity was modulated by perceptual awareness of a threat stimulus. Absent peripheral autonomic arousal, in patients with autonomic denervation, was associated with decreased conditioning-related activity in insula and amygdala. The findings indicate that the expression of conditioning-related neural activity is modulated by both awareness and representations of bodily states of autonomic arousal.  相似文献   

7.
Novel stimuli often require a rapid reallocation of sensory processing resources to determine the significance of the event, and the appropriate behavioral response. Both the amygdala and the visual cortex are central elements of the neural circuitry responding to novelty, demonstrating increased activity to new as compared to highly familiarized stimuli. Further, these brain areas are intimately connected, and thus the amygdala may be a key region for directing sensory processing resources to novel events. Although knowledge regarding the neurocircuit of novelty detection is gradually increasing, we still lack a basic understanding of the conditions that are necessary and sufficient for novelty-specific responses in human amygdala and the visual cortices, and if these brain areas interact during detection of novelty. In the present study, we investigated the response of amygdala and the visual cortex to novelty, by comparing functional MRI activity between 1st and 2nd time presentation of a series of emotional faces in an event-related task. We observed a significant decrease in amygdala and visual cortex activity already after a single stimulus exposure. Interestingly, this decrease in responsiveness was less for subjects with a high score on state anxiety. Further, novel faces stimuli were associated with a relative increase in the functional coupling between the amygdala and the inferior occipital gyrus (BA 18). Thus, we suggest that amygdala is involved in fast sensory boosting that may be important for attention reallocation to novel events, and that the strength of this response depends on individual state anxiety.  相似文献   

8.
Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD); however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI). Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (ACC), and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients’ interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD.  相似文献   

9.
Animals are not passive spectators of the sensory world in which they live. In natural conditions they often sense objects on the bases of expectations initiated by predictive cues. Expectation profoundly modulates neural activity by altering the background state of cortical networks and modulating sensory processing. The link between these two effects is not known. Here, we studied how cue-triggered expectation of stimulus availability influences processing of sensory stimuli in the gustatory cortex (GC). We found that expected tastants were coded more rapidly than unexpected stimuli. The faster onset of sensory coding related to anticipatory priming of GC by associative auditory cues. Simultaneous recordings and pharmacological manipulations of GC and basolateral amygdala revealed the role of top-down inputs in mediating the effects of anticipatory cues. Altogether, these data provide a model for how cue-triggered expectation changes the state of sensory cortices to achieve rapid processing of natural stimuli.  相似文献   

10.
Subcortical discrimination of unperceived objects during binocular rivalry   总被引:8,自引:0,他引:8  
Pasley BN  Mayes LC  Schultz RT 《Neuron》2004,42(1):163-172
Rapid identification of behaviorally relevant objects is important for survival. In humans, the neural computations for visually discriminating complex objects involve inferior temporal cortex (IT). However, less detailed but faster form processing may also occur in a phylogenetically older subcortical visual system that terminates in the amygdala. We used binocular rivalry to present stimuli without conscious awareness, thereby eliminating the IT object representation and isolating subcortical visual input to the amygdala. Functional magnetic resonance imaging revealed significant brain activation in the left amygdala but not in object-selective IT in response to unperceived fearful faces compared to unperceived nonface objects. These findings indicate that, for certain behaviorally relevant stimuli, a high-level cortical representation in IT is not required for object discrimination in the amygdala.  相似文献   

11.
Wang DV  Wang F  Liu J  Zhang L  Wang Z  Lin L 《PloS one》2011,6(4):e18739
The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors.  相似文献   

12.
The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and –independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants'' action in hippocampal neurogenesis and in their link to depression-like behaviors.  相似文献   

13.
Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.  相似文献   

14.
The neural basis of social cognition has been the subject of intensive research in both human and non-human primates. Exciting, provocative and yet consistent findings are emerging. A major focus of interest is the role of efferent and afferent connectivity between the amygdala and the neocortical brain regions, now believed to be critical for the processing of social and emotional perceptions. One possible component is a subcortical neural pathway, which permits rapid and preconscious processing of potentially threatening stimuli, and it leads from the retina to the superior colliculus, to the pulvinar nucleus of the thalamus and then to the amygdala. This pathway is activated by direct eye contact, one of many classes of potential threat, and may be particularly responsive to the 'whites of the eyes'. In humans, autonomic arousal evoked by this stimulus is associated with the activity in specific cortical regions concerned with processing visual information from faces. The integrated functioning of these pathways is modulated by one or more X-linked genes, yet to be identified. The emotional responsiveness of the amygdala, and its associated circuits, to social threat is also influenced by functional polymorphisms in the promoter of the serotonin transporter gene. We still do not have a clear account of how specific allelic variation, in candidate genes, increases susceptibility to developmental disorders, such as autism, or psychiatric conditions, such as anxiety or depressive illness. However, the regulation of emotional responsiveness to social cues lies at the heart of the problem, and recent research indicates that we may be nearing a deeper and more comprehensive understanding.  相似文献   

15.
Animals and humans learn to approach and acquire pleasant stimuli and to avoid or defend against aversive ones. However, both pleasant and aversive stimuli can elicit arousal and attention, and their salience or intensity increases when they occur by surprise. Thus, adaptive behavior may require that neural circuits compute both stimulus valence--or value--and intensity. To explore how these computations may be implemented, we examined neural responses in the primate amygdala to unexpected reinforcement during learning. Many amygdala neurons responded differently to reinforcement depending upon whether or not it was expected. In some neurons, this modulation occurred only for rewards or aversive stimuli, but not both. In other neurons, expectation similarly modulated responses to both rewards and punishments. These different neuronal populations may subserve two sorts of processes mediated by the amygdala: those activated by surprising reinforcements of both valences-such as enhanced arousal and attention-and those that are valence-specific, such as fear or reward-seeking behavior.  相似文献   

16.
Tan J  Ma Z  Gao X  Wu Y  Fang F 《PloS one》2011,6(5):e20305
By combining binocular suppression technique and a probe detection paradigm, we investigated attentional bias to invisible stimuli and its gender difference in both high trait anxiety (HTA) and low trait anxiety (LTA) individuals. As an attentional cue, happy or fearful face pictures were presented to HTAs and LTAs for 800 ms either consciously or unconsciously (through binocular suppression). Participants were asked to judge the orientation of a gabor patch following the face pictures. Their performance was used to measure attentional effect induced by the cue. We found gender differences of attentional effect only in the unconscious condition with HTAs. Female HTAs exhibited difficulty in disengaging attention from the location where fearful faces were presented, while male HTAs showed attentional avoidance of it. Our results suggested that the failure to find attentional avoidance of threatening stimuli in many previous studies might be attributed to consciously presented stimuli and data analysis regardless of participants' gender. These findings also contributed to our understanding of gender difference in anxiety disorder.  相似文献   

17.
Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.  相似文献   

18.
The social behavior of both human and nonhuman primates relies on specializations for the recognition of individuals, their facial expressions, and their direction of gaze. A broad network of cortical and subcortical structures has been implicated in face processing, yet it is unclear whether co-occurring dimensions of face stimuli, such as expression and direction of gaze, are processed jointly or independently by anatomically and functionally segregated neural structures. Awake macaques were presented with a set of monkey faces displaying aggressive, neutral, and appeasing expressions with head and eyes either averted or directed. BOLD responses to these faces as compared to Fourier-phase-scrambled images revealed widespread activation of the superior temporal sulcus and inferotemporal cortex and included activity in the amygdala. The different dimensions of the face stimuli elicited distinct activation patterns among the amygdaloid nuclei. The basolateral amygdala, including the lateral, basal, and accessory basal nuclei, produced a stronger response for threatening than appeasing expressions. The central nucleus and bed nucleus of the stria terminalis responded more to averted than directed-gaze faces. Independent behavioral measures confirmed that faces with averted gaze were more arousing, suggesting the activity in the central nucleus may be related to attention and arousal.  相似文献   

19.
A distributed, serotonergically innervated neural system comprising extrastriate cortex, amygdala and ventral prefrontal cortex is critical for identification of socially relevant emotive stimuli. The extent to which a genetic variation of serotonin transporter gene 5-HTTLPR impacts functional connectivity between the amygdala and the other components of this neural system remains little examined. In our study, neural activity was measured using event-related functional magnetic resonance imaging in 29 right-handed, white Caucasian healthy subjects as they viewed mild or prototypical fearful and neutral facial expressions. 5-HTTLPR genotype was classified as homozygous for the short allele ( S/S ), homozygous for the long allele ( L/L ) or heterozygous ( S/L ). S/S showed greater activity than L/L within right fusiform gyrus (FG) to prototypically fearful faces. To these fearful faces, S/S more than other genotype subgroups showed significantly greater positive functional connectivity between right amygdala and FG and between right FG and right ventrolateral prefrontal cortex (VLPFC). There was a positive association between measure of psychoticism and degree of functional connectivity between right FG and right VLPFC in response to prototypically fearful faces. Our data are the first to show that genotypic variation in 5-HTTLPR modulates both the amplitude within and the functional connectivity between different components of the visual object-processing neural system to emotionally salient stimuli. These effects may underlie the vulnerability to mood and anxiety disorders potentially triggered by socially salient, emotional cues in individuals with the S allele of 5-HTTLPR.  相似文献   

20.
Task selection, previously thought to operate only under conscious, voluntary control, can be activated by unconsciously-perceived stimuli. In most cases, such activation is observed for unconscious stimuli that closely resemble other conscious, task-relevant stimuli and hence may simply reflect perceptual activation of consciously established stimulus-task associations. However, other studies have reported ‘direct’ unconscious-stimulus influences on task selection in the absence of any conscious, voluntary association between that stimulus and task (e.g., Zhou and Davis, 2012). In new experiments, described here, these latter influences on cued- and free-choice task selection appear robust and long-lived, yet, paradoxically, are suppressed to undetectable levels following momentary conscious prime-task pairing. Assessing, and rejecting, three intuitive explanations for such suppressive effects, we conclude that conscious prime-task pairing minimizes non-strategic influences of unconscious stimuli on task selection, insulating endogenous choice mechanisms from maladaptive external control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号