首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.  相似文献   

3.
To elucidate the molecular mechanism of the integration of long interspersed elements (LINEs), we characterized the 5′ ends of more than 200 LINE de novo retrotransposition events into chicken DT40 or human HeLa cells. Human L1 inserts produced 15-bp target-site duplications (TSDs) and zebrafish ZfL2-1 inserts produced 5-bp TSDs in DT40 cells, suggesting that TSD length depends on the LINE species. Further analysis of 5′ junctions revealed that the 5′-end-joining pathways of LINEs can be divided into two fundamental types—annealing or direct. We also found that the generation of 5′ inversions depends on host and LINE species. These results led us to propose a new model for 5′-end joining, the type of which is determined by the extent of exposure of 3′ overhangs generated after the second-strand cleavage and by the involvement of host factors.  相似文献   

4.
Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPβ from the chromosome. SPβ excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPβ, where all the SPβ genes were deleted, except sprA and sprB, retained the SPβ excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA) resulted in SPβ prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPβ-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection.  相似文献   

5.
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.  相似文献   

6.

Background

Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome.

Results

We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure.

Conclusions

There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral element in the genome. Galileo shows a significant insertion preference for a 15-bp palindromic TSM.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-792) contains supplementary material, which is available to authorized users.  相似文献   

7.
An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlue-Script II KS+ vector (pBSLTR), and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the lacZ gene; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction. Upon IPTG induction of E. coli XL-1 Blue cells obtained by cotransformation with plasmids pACYCint and pBSLTR on an X-gal-containing medium, blue clones appeared with a frequency of 10?4 to 10?3, the frequency of spontaneously appearing blue colonies not exceeding 10?9 to 10?8. The presence of blue colonies indicated that that the integrase encoded by the INT ORF2 (pACYCint) fragment was active. After the expression of the integrase, it recognized and excised the gypsy LTR from pBSLTR, precisely restoring the nucleotide sequence and the function of the lacZ gene, which led to the expression of the β-galactosidase enzymatic activity. PCR analysis confirmed that the LTR was excised precisely. Thus, the resultant biplasmid model system allowed precise excisions of the gypsy LTR from the target site to be detected. Apparently, the gypsy integrase affected not only the LTR of this mobile element, but also the host genome nucleotide sequences. The system is likely to have detected only some of the events occurring in E. coli cells. Thus, the integrase of gypsy is actually capable of not only transposing this element by inserting DNA copies of the gypsy retrotransposon to chromosomes of Drosophila, but also excising them. gypsy is excised via a precise mechanism, with the original nucleotide sequence of the target site being completely restored. The obtained data demonstrate the existence of alternative ways of the transposition of retrotransposons and, possibly, retroviruses, including gypsy (mdg4).  相似文献   

8.
9.
Vibrio pathogenicity island-2 (VPI-2) is a 57-kb region integrated at a transfer RNA (tRNA)-serine locus that encompasses VC1758 to VC1809 on the V. cholerae N16961 genome and is present in pandemic isolates. VPI-2 encodes a P4-like integrase, a restriction modification system, a Mu phage-like region, and a sialic acid metabolism region, as well as neuraminidase (VC1784), which is a glycosylhydrolase known to release sialic acid from sialoglycoconjugates to unmask GM1 gangliosides, the receptor for cholera toxin. We examined the tRNA-serine locus among the sequenced V. cholerae genomes and identified five variant VPI-2 regions, four of which retained the sialometabolism region. Three variant VPI-2 regions contained a type three secretion system. By using an inverse nested PCR approach, we found that the VPI-2 region can form an extrachromosomal circular intermediate (CI) molecule after precise excision from its tRNA-serine attachment site. We constructed a knockout mutant of VC1758 (int) with V. cholerae strain N16961 and found that no excision PCR product was produced, indicating that a functional cognate, VPI-2 integrase, is required for excision. The Vibrio seventh pandemic island-I (VSP-I) and VSP-II regions are present in V. cholerae O1 El Tor and O139 serogroup isolates. Novel regions are present at the VSP-I insertion site in strain MZO-3 and at the VSP-II insertion site in strain 623-39. VSP-II is a 27-kb region that integrates at a tRNA-methionine locus, is flanked by direct repeats, and encodes a P4-like integrase. We show that VSP-II can excise and form a CI and that the cognate VSP-II integrase is required for excision. Interestingly, VSP-I is not inserted at a tRNA locus and does encode a XerDC-like recombinase, but similar to VPI-2 and VSP-II, VSP-I does excise from the genome to form a CI. These results show that all three pathogenicity islands can excise from the chromosome, which is likely a first step in their horizontal transfer.  相似文献   

10.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

11.
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.  相似文献   

12.
Cre-mediated recombination is widely used to manipulate defined genes spatiotemporally in vivo. The present study evaluated the Cre/loxP system in Bombyx mori by establishing two transgenic lines. One line contained a Cre recombinase gene controlled by a sericin-1 gene (Ser1) promoter. The other line contained a loxP-Stop-loxP-DsRed cassette driven by the same Ser1 promoter. The precise deletion of the Stop fragment was found to be triggered by Cre-mediated site-specific excision, and led to the expression of DsRed fluorescence protein in the middle silk glands of all double-transgenic hybrids. This result was also confirmed by phenotypical analysis. Hence, the current study demonstrated the feasibility of Cre-mediated site-specific recombination in B. mori, and opened a new window for further refining genetic tools in silkworms.  相似文献   

13.
14.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

15.
Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision breakpoints were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is unrestricted in drosophilids. Furthermore, drosophilids not containing hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.  相似文献   

16.
The bacteriophage Mu is known to insert its DNA more or less randomly within the Escherichia coli chromosome, as do transposable elements, but unlike the latter, precise excision of the prophage, thereby restoring the original sequence, is not observed with wild-type Mu, although it has been reported with certain defective mutants. We show here that the mutant prophage Mu gem2ts can excise precisely from at least three separate loci —malT, Iac and thyA (selected as Mal+, Lac+ and Thy+, respectively). This excision occurs under permissive conditions for phage development, is observed in fully immune (c+) lysogens, and is independent of RecA and of Mu transposase. Mu gemts2 excision is invariably accompanied by reintegration of a Mu gem2ts prophage elsewhere in the chromosome, in the case of Mal+ revertants, this prophage is systematically located at 94min on the E. coli chromosome. Mu gem2ts excision therefore sheds some light on the long-standing paradox of the lack of precise Mu excisio.  相似文献   

17.
Upon insertion, transposable elements can disrupt or alter gene function in various ways. Transposons moving through a cut-and-paste mechanism are in addition often mutagenic when excising because repair of the empty site seldom restores the original sequence. The characterization of numerous excision events in many eukaryotes indicates that transposon excision from a given site can generate a high degree of DNA sequence and phenotypic variation. Whether such variation is generated randomly remains largely to be determined. To this end, we have exploited a well-characterized system of genetic instability in the fungus Ascobolus immersus to perform an extensive study of excision events. We show that this system, which produces many phenotypically and genetically distinct derivatives, results from the excision of a novel Ds-like transposon, Ascot-1, from the spore color gene b2. A unique set of 48 molecularly distinct excision products were readily identified from a representative sample of excision derivatives. Products varied in their frequency of occurrence over 4 orders of magnitude, yet most showed small palindromic nucleotide additions. Based on these and other observations, compelling evidence was obtained for intermediate hairpin formation during the excision reaction and for strong biases in the subsequent processing steps at the empty site. Factors likely to be involved in these biases suggest new parallels between the excision reaction performed by transposons of the hAT family and V(D)J recombination. An evaluation of the contribution of small palindromic nucleotide additions produced by transposon excision to the spectrum of spontaneous mutations is also presented.  相似文献   

18.
A DNA duplex encoding the A-chain of human insulin was constructed from eight chemically synthesized oligomers by enzymatic ligation to form a partial duplex followed by repair synthesis to complete the complementary strands. After sequential addition of translation start and stop signal adaptors the assembly was cloned in pBR322. To regenerate the end of the coding sequence by precise removal of extraneous nucleotides a new method using a synthetic retrieval adaptor was developed. The procedure included filling in the cohesive ends of the EcoRI site by repair synthesis, ligating a symmetrical adaptor having an MboII recognition sequence to the resulting blunt end, cutting with MboII and removing the single protruding 3′-nucleotide using the 3′ exonuclease activity of DNA polymerase I. Synthetic oligomers useful for ligation to a synthetic insulin C-chain gene were added to the retrieved end of the gene. Sequence analysis established that retrieval adaptors of this type may be used for precise excision of up to eight nucleotides from the end of a cloned DNA fragment.  相似文献   

19.
We report characteristics of himA mutations of E. coli, selected for their inability to support the site-specific recombination reaction involved in the formation of lysogens by bacteriophage λ. The himA allele lies at minute 38 on the chromosome. Three noncomplementing and closely linked mutations define the himA locus; one is a nonsense mutation which shows that the gene product is a protein. HimA mutations reduce both λ integrative and excisive site-specific recombination. Since dominance tests demonstrate that himA mutations are recessive, it is probable that the himA protein is either a necessary component for site-specific recombination or, alternatively, regulates the expression of such a function. HimA mutations exhibit pleiotropic effects. They reduce integration of phages that have different attachment specificities from λ and inhibit the growth of phage mu. In addition, himA mutations reduce precise excision of integrated phage mu as well as Tn elements. This pleiotropy suggests that the role of himA protein is nonspecific. Since all of the processes affected by himA mutations ultimately rely on protein-DNA interactions, we suggest that himA protein may act in an auxillary manner to facilitate these interactions.  相似文献   

20.
The engineering of Corynebacterium glutamicum is important for enhanced production of biochemicals. To construct an improved C. glutamicum genome, we developed a precise genome excision method based on the Cre/loxP recombination system and successfully deleted 11 distinct genomic regions identified by comparative analysis of C. glutamicum genomes. Despite the loss of several predicted open reading frames, the mutant cells exhibited normal growth under standard laboratory conditions. With a total of 250 kb (7.5% of the genome), the 11 genomic regions were loaded with cryptic prophages, transposons, and genes of unknown function which were dispensable for cell growth, indicating recent horizontal acquisitions to the genome. This provides an interesting background for functional genomic studies and can be used in the improvement of cell traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号