首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Effect of NaCl stress on H2O2 metabolism in rice leaves   总被引:22,自引:0,他引:22  
The effect of NaCl stress on H2O2 metabolismin detached rice leaves was studied. NaCl (200 mM)treatment did not cause the accumulation ofH2O2 and resulted in no increase in lipidperoxidation and membrane leakage of leaf tissues. The activities of peroxidase, ascorbate peroxidase,superoxide dismutase, and glutathione reductase wereobserved to be greater in NaCl-stressed rice leavesthan in control leaves. However, glycolate oxidasewas lower in NaCl-treated rice leaves than in thecontrol leaves. There was no difference in catalaseactivity between NaCl and control treatments. Theseresults suggest that some antioxidant enzymes can beactivated in response to oxidative stress induced byNaCl.  相似文献   

4.
The spotted alfalfa aphid,Therioaphis trifolii maculata (Buckton), caused local browning of cells surrounding feeding sites on lucerne plants (cv. Hunter River). Aqueous extracts of infested leaves underwent a marked browning process that did not occur in extracts of healthy leaves. The process was accelerated by addition of tyrosinase and peroxidase and reversed by reducing agents such as ascorbate and glutathione. In the presence of added reducing agents, the extracts produced brown precipitates, probably conjugates of phenolics with leaf proteins similar to those involved in the sealing of damaged tissuesin vivo. Partially autoxidised catechin (PAC) solutions showed an absorbance peak at 438 nm that was increased by polyphenol oxidase and decreased by ascorbate and glutathione. When extraction of tissues into PAC was used to assess redox activities, healthy tissues showed a rapid, short lived oxidising activity combined with a much more persistent reducing activity, whereas infested leaves had even greater oxidising activity and no detectable reducing activity. Soluble phenolics increased in infested leaves and stems. Total protein decreased, but the specific activity of peroxidase, catechol oxidase and superoxide dismutase relative to protein content increased. The ability of extracts to reduce cytochrome c increased, indicating an overall increase in superoxide radicals in attacked tissues. These results are consistent with a general disturbance of redox balance induced in tissues by aphid feeding, including accumulation of oxidases and phenolic substrates and loss of reducing activity and protein.  相似文献   

5.
Portions of shade-acclimated shoots of Cucurbita pepo L. (pumpkin) and Vinca major L. were rapidly transferred to full sunlight exposure and chlorophyll fluorescence emission, pigment composition, antioxidant enzyme activities, ascorbate contents, and the content of thiobarbituric acid-reactive substances (TBARS) were measured at regular intervals for 17 d. The most notable response of leaf pigment composition was a pronounced increase in the pool size of xanthophyll cycle carotenoids that occurred over a period of 4 d (pumpkin) or 11-18 d (V. major). On day 1 after the transfer midday efficiencies of open PSII units decreased to levels similar to or below those observed in full sun-acclimated leaves. Efficiencies of open PSII units were inversely correlated with xanthophyll cycle conversion states in both species on all dates of sampling. A rapid increase in thermal energy dissipation on day 1 may thus have contributed to the absence of either an increase in the content of TBARS (a measure of lipid damage) or pronounced depressions in pre-dawn Fv/Fm. Activities of the antioxidant enzymes ascorbate peroxidase, superoxide dismutase, glutathione reductase, and catalase as well as ascorbate content increased in both species upon transfer, with superoxide dismutase exhibiting the most dramatic increase. Pumpkin, but not V. major, developed new leaves during the study which possessed the attributes of sun-acclimated leaves.  相似文献   

6.
Copper‐imposed oxidative stress and antioxidative defence responses were investigated in the primary leaves of Phaseolus vulgaris L. plants grown on hydroponics containing 50 μM CuSO4. Copper mainly accumulates in roots; therefore, an increase of the copper content in the leaves was only observed 48 h after the start of the copper supply. Nevertheless, an increase of the thiobarbituric acid reactive metabolites (TBArm) content, an indication of stress, occurred immediately following copper application. Because the ascorbate‐glutathione pathway is considered as a major antioxidative defence mechanism, the evolution of the enzymes and the related metabolites involved in this pathway were studied in the primary leaves as a function of plant copper assimilation. The capacities of monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were increased before elevated amounts of copper could be detected in the leaves. The early enhancement of glutathione reductase was only temporary. After copper accumulation in the leaves, a second increase of the glutathione reductase capacity and also an increase of the ascorbate peroxidase capacity (EC 1.11.1.11) were observed. These changes in enzymatic capacity modified the level of the metabolites involved. Increase of the ascorbate pool and maintenance in its reduced form was observed immediately after the start of the treatment. In the beginning of the experiment, the glutathione disulphide/reduced glutathione ratio was higher in the treated plants as compared to the controls. However, towards the end of the experiment, the total glutathione pool, as well as the reduced glutathione content, increased, resulting in a lower ratio value for the treated plants. In conlusion, copper‐imposed oxidative stress, as well as the antioxidative defence response in the leaves, appears to be biphasic. An indirect preventive effect on the antioxidative defence system was observed during the first phase before the leaf copper content increased. A root‐to‐shoot signalling system appears to be involved. Direct oxidation by copper of reduced cell metabolites occurred during the second phase when the leaf copper content was enhanced.  相似文献   

7.
In order to elucidate the possibility of in vivo oxidative modification of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) as a triggering mechanism for its preferential degradation early in senescence, some antioxidant compounds, protective enzymes, H2O2 and protein carbonylation levels were studied in the leaves during dark-induced senescence of barley (Hordeum vulgare L. cv. “Obzor”) seedlings. Analyses were performed in extracts as well as in purified chloroplasts. Some weakening of the antioxidative protection was detected during the treatment: diminution in the ascorbate and non-protein SH (mainly glutathione) pools, lower activities of superoxide dismutase, guaiacol and ascorbate peroxidases. However, no accumulation of H2O2 was found, lower level of protein carbonylation in darkness was measured and the percentage of reduced ascorbate was maintained high. Data concerning antioxidant compounds in chloroplasts revealed some impairment of the ascorbate and glutathione pools under induced senescence - the level of non-protein thiols declined during early senescence whereas the ascorbate pool was not significantly changed. The percentage of reduced ascorbate remained high in the chloroplasts and the activities of superoxide dismutase and of ascorbate peroxidase were conserved. Taken together the results are not in accordance with the possibility of in vivo oxidative modification of Rubisco in the case of dark-induced senescence. Our data bring some support to the view about redox regulation of Rubisco turnover in senescence through the pool of the low-molecular chloroplastic thiols.  相似文献   

8.
The objective of this study was to examine the role of antioxidant enzymes in waterlogging tolerance of pigeonpea (Cajanus cajan L. Halls) genotypes ICP 301 (tolerant) and Pusa 207 (susceptible). Waterlogging resulted in visible yellowing and senescence of leaves, decrease in leaf area, dry matter, relative water content and chlorophyll content in leaves, and membrane stability index in roots and leaves. The decline in all parameters was greater in Pusa 207 than ICP 301. Oxidative stress in the form of superoxide radical, hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) contents initially decreased, however at 4 and 6 d of waterlogging it increased over control plants, probably due to activation of DPI-sensitive NADPH-oxidase. Antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase also increased under waterlogging. The comparatively greater antioxidant enzyme activities resulting in less oxidative stress in ICP 301 could be one of the factor determining its higher tolerance to flooding as compared to Pusa 207. This study is the first to conclusively prove that waterlogging induced increase in ROS is via NADPH oxidase.  相似文献   

9.
Nitrate reduction was studied as a function of carbohydrate concentration in detached primary leaves of barley (Hordeum vulgare L. cv Numar) seedlings under aerobic conditions in light and darkness. Seedlings were grown either in continuous light for 8 days or under a regimen of 16-hour light and 8-hour dark for 8 to 15 days. Leaves of 8-day-old seedlings grown in continuous light accumulated 4 times more carbohydrates than leaves of plants grown under a light and dark regimen. When detached leaves from these seedlings were supplied with NO3 in darkness, those with the higher levels of carbohydrates reduced a greater proportion of the NO3 that was taken up. In darkness, added glucose increased the percentage of NO3 reduced up to 2.6-fold depending on the endogenous carbohydrate status of the leaves. Both NO3 reduction and carbohydrate content of the leaves increased with age. Fructose and sucrose also increased NO3 reduction in darkness to the same extent as glucose. Krebs cycle intermediates, citrate and succinate, did not increase NO3 reduction, whereas malate slightly stimulated it in darkness.

In light, 73 to 90% of the NO3 taken up was reduced by the detached leaves; therefore, an exogenous supply of glucose had little additional effect on NO3 reduction. The results indicate that in darkness the rate of NO3 reduction in primary leaves of barley depends upon the availability of carbohydrates.

  相似文献   

10.
Protoplasts isolated from Nicotiana tabacum (L.) leaves were cultured for 6 days in liquid medium and some features of their antioxidant capacity were investigated. Ascorbate exported into the culture medium was oxidized non-enzymically, whereas important modifications of the enzymic scavenging activity were detected inside protoplasts. A new pool of isoenzymes, most of them with cytoplasmic characteristics, ensures the increased ascorbate peroxidase activity. The specific activity of other enzymes involved in the ascorbate/glutathione cycle, such as dehydroascorbate reductase and glutathione reductase, and of glutathione peroxidase were modified, resulting in cultured protoplasts with quantitative differences in antioxidant capacity compared to leaves. The hypothesis presented here suggests that the new scavenging system is related to differences in the compartment-specific accumulation of active oxygen species following protoplast isolation. Received: 8 December 1997 / Revision received: 27 March 1998 / Accepted: 10 April 1998  相似文献   

11.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

12.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

13.
Three oat (Avena sativa L.) lines which show differential responses to attack by the biotrophic fungal pathogen Blumeria graminis DC f. sp. avenae Marchal, which causes powdery mildew, were studied: Maldwyn shows the strongest resistance in adult plants; Selma shows greater susceptibility; while a Selma × Maldwyn hybrid, OM1387, has a similar degree of resistance to Maldwyn. Host responses to pathogen attack were complete 48 h after inoculation but largely accomplished within the first 24 h, the point when material was taken for enzyme and metabolic assays. In Maldwyn and OM1387 about 80% of attacked cells showed localized autofluorescent host-cell responses but this fell to less than 20% in Selma. A cytoplasmic marker enzyme, glucose 6-phosphate dehydrogenase, was used to determine contamination of the apoplastic extracts by cellular components. After correction for cytoplasmic contamination, up to 4% of the total foliar activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were detected in the apoplast. The apoplast contained about 2% of the total foliar glutathione pool and dehydroascorbate, but not ascorbate, at values amounting to 10% of the total foliar ascorbate plus dehydroascorbate pool. Twenty-four hours after inoculation the foliar or apoplastic ascorbate pools were similar in inoculated and control leaves. Foliar catalase activity increased in both susceptible and resistant responses. Resistance correlated with increased total foliar glutathione, an increase in the ratio of reduced to oxidized glutathione and with decreased total activities of foliar ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. Received: 17 April 1998 / Accepted: 28 August 1998  相似文献   

14.
Tewari RK  Kumar P  Sharma PN 《Planta》2006,223(6):1145-1153
The aim of the study was to implicate the generation of reactive oxygen species (ROS) and altered cellular redox environment with the effects of Cu-deficiency or Cu-excess in mulberry (Morus alba L.) cv. Kanva 2 plants. A study of antioxidative responses, indicators of oxidative damage and cellular redox environment in Cu-deficient or Cu-excess mulberry plants was undertaken. While the young leaves of plants supplied with nil Cu showed chlorosis and necrotic scorching of laminae, the older and middle leaves of plants supplied with nil or 0.1 μM Cu showed purplish-brown pigmented interveinal areas that later turned necrotic along the apices and margins of leaves. The Cu-excess plants showed accelerated senescence of the older leaves. The Cu-deficient plants showed accumulation of hydrogen peroxide and superoxide anion radical. The accumulation of hydrogen peroxide was strikingly intense in the middle portion of trichomes on Cu-deficient leaves. Though the concentration of total ascorbate increased with the increasing supply of Cu, the ratio of the redox couple (DHA/ascorbic acid) increased in Cu-deficient or Cu-excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) increased in both Cu-deficient and Cu-excess plants. The results suggest that deficiency of Cu aggravates oxidative stress through enhanced generation of ROS and disturbed redox couple. Excess of Cu damaged roots, accelerated the rate of senescence in the older leaves, induced antioxidant responses and disturbed the cellular redox environment in the young leaves of mulberry plants.  相似文献   

15.
Many plant leaves appear red in the autumn, and many papers have focused on the environmental factors and role of anthocyanin in this process. However few papers have examined the substances that are induced during this process. We hypothesised that excess sugar accumulation directly induces anthocyanin accumulation under autumn conditions. Using two methods (restricting phloem movement and exogenous sucrose feeding), we found that both surplus photosynthate and exogenous sucrose could induce anthocyanin biosynthesis, corresponding to up‐regulation of several enzymes involved in anthocyanin biosynthesis (phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol 4‐reductase and flavonoid 3‐O‐glucosyl transferase) and in transport (glutathione S‐transferase). Our results suggest that excess carbohydrate may be the proximate trigger for induction of anthocyanin biosynthesis in autumn, but only when carbohydrates are accumulated for storage.  相似文献   

16.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

17.
Detached green leaves of the aquatic plant Egeria densa showed chlorophyll degradation and turned red due to induced anthocyanin synthesis incubated in 0.1 M sucrose under continuous light for 7–10 days. If the leaves were placed in water, only chlorophyll degradation occurred and the detached leaves turned yellow. The levels of endogenous total carbohydrates increased in detached leaves cultured in the sucrose solution but only increased marginally in water. If the leaves were still attached to a piece of stem, with a node on either side of the single leaf whorl, then they did not accumulate anthocyanin in culture with 0.1 M sucrose. These leaves showed a similar increase in total carbohydrates and degradation of chlorophyll as detached leaves. Attached leaves, in which the midrib had been cut in situ, showed localized accumulation of anthocyanin in the leaf tissue distal to the cut in the midrib when cultured in 0.1 M sucrose. These results suggest that the stem plays a regulatory role in anthocyanin synthesis in attached leaves cultured in a sucrose solution but does not influence chlorophyll degradation or carbohydrate accumulation.  相似文献   

18.
Antioxidative response to cadmium in roots and leaves of tomato plants   总被引:1,自引:0,他引:1  
Treatment of tomato seedlings (Lycopersicon esculentum Mill. cv. 63/5 F1) with increasing CdCl2 concentrations in the culture medium resulted in Cd accumulation more important in roots than in leaves. Biomass production was severely inhibited, even at low Cd concentration. Cd reduced chlorophyll content in leaves and enhanced lipid peroxidation. An increase in antioxidative enzyme (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) activities was more pronounced in leaves than in roots, while catalase activity increased only in roots. In addition, changes in isoenzyme composition were observed using the non-denaturing polyacrylamid gel electrophoresis.  相似文献   

19.
The effect of magnesium (Mg2+)‐deficiency on the antioxidant responses of Capsicum annuum was investigated over a 60‐day period under controlled conditions. This Mg2+‐deficiency aimed to mimic the physiological conditions that plants may experience in the field. At each harvest time, five different leaf‐levels (L2 to L6) were distinguished. L2 and L6 correspond to the second and sixth youngest leaves, respectively. The following parameters were determined: Mg2+, chlorophyll and protein contents, total and redox pools of ascorbate and glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Under Mg2+‐deficiency, leaf Mg2+ contents decreased over time in all leaf‐levels except in the second youngest leaves (L2), where they remained constant at about 0.25% (dry weight basis). Mg2+‐deficiency led to an increase in the antioxidant enzyme activities concomitant with an increase in the ascorbate and glutathione pools, whereas total chlorophyll and soluble protein contents decreased. The L2 leaves showed an increase in glutathione reductase activity and in the ascorbate redox state whereas no difference was observed for the other parameters. Superoxide dismutase activities increased in L5 leaves from day 15 and, afterwards, in L3 to L5 leaves, irrespective of Mg2+ content. At day 30, glutathione reductase activities increased in L2 to L4 leaves and dehydroascorbate reductase activities in L4 leaves. At day 45, we observed an increase in the ascorbate peroxidase activities in L3 to L5 leaves. At the same time, ascorbate and glutathione pools increased in intermediate leaves, whereas chlorophyll content decreased in L3 and L4 leaves, and protein content decreased in L4 leaves. Results suggest that pepper leaves enhance their defence capacities against oxidative stress by increasing ascorbate more than glutathione synthesis. However, cells showed higher regeneration rates for the glutathione redox state than for the ascorbate redox state.  相似文献   

20.
A variety of ecophysiological parameters were monitored in leaves of Hevea brasiliensis (rubber tree) during seasonal leaf senescence. Higher levels of hydrogen peroxide and malondialdehyde, and lower content of total protein and efficiency of photochemistry of photosystem II (PSII) were observed in the senescent leaves (SL) compared to the mature leaves (ML). A significant decrease in the contents of chlorophyll (Chl) and carotenoids (Car) in SL was also observed, but with increase in ratio of Car/Chl. Moreover, activities of superoxide dismutases, catalase, and glutathione reductase in SL were strongly suppressed. In contrast, the activities of guaiacol peroxidase (POD) and ascorbate peroxidase (APX), and the contents of reduced ascorbate, total ascorbate, reduced glutathione and total glutathione were considerably increased in SL compared to ML. In addition, α-pinene, β-pinene, sabinene and total monoterpene pool in SL were drastically decreased. Taken together, these results indicate that the enhanced activities of POD and APX, and further activation of ascorbate-glutathione cycle conferred an important photoprotection against oxidative stress in senescent leaves of rubber trees. The increased Car/Chl could give the protection against photoxidation as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号