首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

2.
Pima S‐6 ( Gossypium barbadense L.) is a modern line with high stomatal conductance, while B368 is a primitive cotton with low conductance. The blue light sensitivity of adaxial guard cells, probed as the blue light‐dependent enhancement of the red light‐induced chlorophyll a fluorescence quenching, was investigated in these two cotton lines with contrasting stomatal conductance. Adaxial guard cells isolated from Pima S‐6 cotton plants had a significantly higher carotenoid content and a higher blue light sensitivity than those isolated from B368 plants. In a growth chamber‐grown F2 population of a cross between these two lines, adaxial stomatal conductances of individual plants segregated over a range exceeding the average conductances of the parents. Carotenoid content and the blue light sensitivity of adaxial guard cells also segregated. The concentrations of xanthophylls and β‐carotene in the adaxial guard cells were poorly correlated with the blue light response, except for zeaxanthin. The co‐segregation of stomatal conductance and blue light sensitivity suggested that the stomatal response to blue light may play a role in the regulation of stomatal conductance in the intact leaf. Zeaxanthin content and blue light sensitivity also co‐segregated, suggesting that both parameters are under genetic control. The co‐segregation of zeaxanthin content, blue light sensitivity and stomatal conductance provides further evidence for a role of zeaxanthin in the blue light photoreception of guard cells.  相似文献   

3.
Guard cells of the orchid genus, Paphiopedilum have been reported to lack developed chloroplasts and detectable chlorophyll a autofluorescence. Paphiopedilum stomata lack a photosynthesis-dependent opening response but have a blue light-specific opening. The present study found that low fluence rate green and red light elicited stomatal opening in Paphiopedilum and this opening was reversed by far red light, indicating the presence of a phytochrome-mediated opening response. Phytochrome-dependent, red light-stimulated opening was largest under low fluence rates and decreased to near zero as fluence rate increased. A recently discovered green light reversibility of blue light-specific stomatal opening was used to probe the properties of the blue light response in Paphiopedilum stomata. Blue light-stimulated opening was completely reversed by green light in the presence of far red light. Red light enhanced the blue light response of Paphiopedilum guard cells when given as a pretreatment or together with blue light. Analysis of guard cell pigments showed that guard cells have small amounts of chlorophyll a and b, zeaxanthin, violaxanthin, antheraxanthin and lutein. Zeaxanthin content increased in response to blue light or ascorbate and declined in the dark or under illumination in the presence of dithiothreitol, indicating the presence of an active xanthophyll cycle. Thus Paphiopedilum stomata possess both a blue light-mediated opening response with characteristics similar to species with normal chloroplast development and a novel phytochrome-mediated opening response.  相似文献   

4.
The Arabidopsis mutant npq1, which cannot accumulate zeaxanthin because of a defective violaxanthin deepoxidase, was used to investigate the role of zeaxanthin in the stomatal response to blue light. Neither dark-adapted nor light-treated guard cells or mesophyll cells of the npq1 mutant contained detectable zeaxanthin. In contrast, wild-type guard cells had a significant zeaxanthin content in the dark and accumulated large amounts of zeaxanthin when illuminated. The well-documented red light enhancement of blue light-stimulated stomatal opening, in which increasing fluence rates of background red light result in increased response to blue light, was used to probe the specific blue light response of Arabidopsis stomata. Stomata from the npq1 mutant did not have a specific blue light response under all fluence rates of background red light tested. On the other hand, stomata from leaves of hy4 (cry 1), an Arabidopsis mutant lacking blue light-dependent inhibition of hypocotyl elongation, had a typical enhancement of the blue light response by background red light. The lack of a specific blue light response in the zeaxanthinless npq1 mutant provides genetic evidence for the role of zeaxanthin as a blue light photoreceptor in guard cells.  相似文献   

5.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

6.
Zeaxanthin has been correlated with high-energy non-photochemical fluorescence quenching but whether antheraxanthin, the intermediate in the pathway from violaxanthin to zeaxanthin, also relates to quenching is unknown. The relationships of zeaxanthin, antheraxanthin and pH to fluorescence quenching were examined in chloroplasts ofPisum sativum L. cv. Oregon andLactuca sativa L. cv. Romaine. Data matrices as five levels of violaxanthin de-epoxidation against five levels of light-induced lumen-proton concentrations were obtained for both species. The matrices included high levels of antheraxanthin as well as lumen-proton concentrations induced by subsaturating to saturation light levels. Analyses of the matrices by simple linear and multiple regression showed that quenching is predicted by models where the major independent variable is the product of lumen acidity and de-epoxidized xanthophylls, the latter as the sum of zeaxanthin and antheraxanthin. The interactions of lumen acidity and xanthophyll concentration are shown in three-dimensional plots of the best-fit multiple regression models. Antheraxanthin apparently contributes to quenching as effectively as zeaxanthin and explains quenching previously not accounted for by zeaxanthin. Hence, we propose that all high-energy dependent quenching is xanthophyll dependent. Quenching requires a threshold lumen pH that varies with xanthophyll composition. After the threshold, quenching is linear with lumen acidity or xanthophyll composition.  相似文献   

7.
Blue light (BL) induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL) enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we investigated the effects of RL on BL-dependent stomatal opening in isolated epidermis, guard cell protoplasts, and intact leaves of Arabidopsis thaliana. In isolated epidermal tissues and intact leaves, weak BL superimposed on RL enhanced stomatal opening while BL alone was less effective. In guard cell protoplasts, RL enhanced BL-dependent H+-pumping and DCMU, a photosynthetic electron transport inhibitor, eliminated this effect. RL enhanced phosphorylation levels of the H+-ATPase in response to BL, but this RL effect was not suppressed by DCMU. Furthermore, DCMU inhibited both RL-induced and BL-dependent stomatal opening in intact leaves. The photosynthetic rate in leaves correlated positively with BL-dependent stomatal opening in the presence of DCMU. We conclude that guard cell chloroplasts provide ATP and/or reducing equivalents that fuel BL-dependent stomatal opening, and that they indirectly monitor photosynthetic CO2 fixation in mesophyll chloroplasts by absorbing PAR in the epidermis.  相似文献   

8.
Metabolism of abscisic acid (ABA) was investigated in isolated guard cells and in mesophyll tissue of Vicia faba L. and Commelina communis L. After incubation in buffer containing [G-3H]±ABA, the tissue was extracted by grinding and the metabolites separated by thin layer chromatography. Guard cells of Commelina metabolized ABA to phaseic acid (PA), dihydrophaseic acid (DPA), and alkali labile conjugates. Guard cells of Vicia formed only the conjugates. Mesophyll cells of Commelina accumulated DPA while mesophyll cells of Vicia accumulated PA. Controls showed that the observed metabolism was not due to extracellular enzyme contaminants nor to bacterial action.

Metabolism of ABA in guard cells suggests a mechanism for removal of ABA, which causes stomatal closure of both species, from the stomatal complex. Conversion to metabolites which are inactive in stomatal regulation, within the cells controlling stomatal opening, might precede detectable changes in levels of ABA in bulk leaf tissue. The differences observed between Commelina and Vicia in metabolism of ABA in guard cells, and in the accumulation product in the mesophyll, may be related to differences in stomatal sensitivity to PA which have been reported for these species.

  相似文献   

9.
A new type of microfluorometer was applied to assess photosynthesis at the single-cell level by chlorophyll fluorescence using the saturation pulse method. A microscopy–pulse amplitude modulation (PAM) chlorophyll fluorometer was combined with a Zeiss Axiovert 25 inverted epifluorescence microscope for high-resolution measurements on single mesophyll and guard cells and the respective protoplasts. Available information includes effective quantum yield of photosystem II, relative electron transport rate and energization of the thylakoid membrane due to the transthylakoidal proton gradient. Dark–light induction curves of guard cell (GCPs) and mesophyll cell protoplasts (MCPs) displayed very similar characteristics, indicating similar functional organization of thylakoid membranes in both types of chloroplasts. Light response curves, however, revealed much earlier saturation of photosynthetic electron flow in GCPs than in MCPs. Under anaerobiosis, photosynthetic electron flow and membrane energization were severely suppressed. A similar effect was observed in guard cells when epidermal peels were incubated with the fungal toxin fusicoccin which activates the plasma membrane H+-ATPase and causes irreversible opening of stomata. The drop in electron transport rate was prevented by blocking ATP consumption of the H+ pump or by glucose addition. These results show that chlorophyll fluorescence quenching analysis allows profound insights into stomatal physiology.  相似文献   

10.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

11.
Controversies regarding the function of guard cell chloroplasts and the contribution of mesophyll in stomatal movements have persisted for several decades. Here, by comparing the stomatal opening of guard cells with (crl‐ch) or without chloroplasts (crl‐no ch) in one epidermis of crl (crumpled leaf) mutant in Arabidopsis, we showed that stomatal apertures of crl‐no ch were approximately 65–70% those of crl‐ch and approximately 50–60% those of wild type. The weakened stomatal opening in crl‐no ch could be partially restored by imposing lower extracellular pH. Correspondingly, the external pH changes and K+ accumulations following fusicoccin (FC) treatment were greatly reduced in the guard cells of crl‐no ch compared with crl‐ch and wild type. Determination of the relative ATP levels in individual cells showed that crl‐no ch guard cells contained considerably lower levels of ATP than did crl‐ch and wild type after 2 h of white light illumination. In addition, guard cell ATP levels were lower in the epidermis than in leaves, which is consistent with the observed weaker stomatal opening response to white light in the epidermis than in leaves. These results provide evidence that both guard cell chloroplasts and mesophyll contribute to the ATP source for H+ extrusion by guard cells.  相似文献   

12.
Dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidation and zeaxanthin formation in chloroplasts, inhibited blue-light-stimulated stomatal opening in epidermal peels of Vicia faba L. in a concentration-dependent fashion. Complete inhibition was observed at 3 mM DTT. The DTT effect was specific for the stomatal response to blue light, and the red-light-stimulated opening, which depends on photosynthetic reactions in the guard cells, was unaffected. Preirradiation of stomata in epidermal peels with increasing photon fluence rates of red light, prior to an incubation in 10 mol·m-2·s-1 of blue light and 100 mol·m-2·s-1 red light, resulted in a DTT-sensitive, blue-light-stimulated opening that was proportional to the fluence rate of the red light pre-treatment. Guard cells in epidermal peels and guard-cell protoplasts irradiated with red light showed increases in their zeaxanthin content that depended on the fluence rate of red light, or on the incubation time. The increases in zeaxanthin concentration were inhibited by DTT. The obtained results indicate that zeaxanthin could function as a photoreceptor mediating the stomatal responses to blue light.Abbreviation DTT dithiothreitol This work was supported by grants from the National Science Foundation and the US Department of Energy to E.Z.  相似文献   

13.
The effect of three sugars and their amino derivatives on violaxanthin cycle enzymes activity was investigated in duckweed (Lemna trisulca), a model water-plant. No effect of sugars and amino sugars on violaxanthin de-epoxidase was observed independent of incubation time; however, epoxidation of zeaxanthin to violaxanthin was inhibited. The minimum amino sugar concentrations causing maximum inhibition of zeaxanthin epoxidation have been estimated. Amino sugars but not sugars caused more than a 50% inhibition of zeaxanthin epoxidation in duckweed after a 24h incubation when applied at a concentration of 0.5%. Incubation with amino sugars under a 6d photoperiod enhanced the inhibitory effect. Zeaxanthin epoxidation was completely inhibited under such conditions, whereas only a minor inhibitory effect was observed in sugar treated plants. The strong amino sugar inhibition of zeaxanthin epoxidase activity represents additional evidence for the creation of an unstable carotenoid carbocation in the molecular mechanism of epoxidation.  相似文献   

14.
Violaxanthin de-epoxidase (VDE) catalyzes the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle. Tobacco was transformed with an antisense VDE construct under control of the cauliflower mosaic virus 35S promoter to determine the effect of reduced levels of VDE on plant growth. Screening of 40 independent transformants revealed 18 antisense lines with reduced levels of VDE activity with two in particular (TAS32 and TAS39) having greater than 95% reduction in VDE activity. Northern analysis demonstrated that these transformants had greatly suppressed levels of VDE mRNA. De-epoxidation of violaxanthin was inhibited to such an extent that no zeaxanthin and only very low levels of antheraxanthin could be detected after exposure of leaves to high light (2000 μmol m−2 s−1 for 20 min) with no observable effect on levels of other carotenoids and chlorophyll. Non-photochemical quenching was greatly reduced in the antisense VDE tobacco, demonstrating that a significant level of the non-photochemical quenching in tobacco requires de-epoxidation of violaxanthin. Although the antisense plants demonstrated a greatly impaired de-epoxidation of violaxanthin, no effect on plant growth or photosynthetic rate was found when plants were grown at a photon flux density of 500 or 1000 μmol m−2 s−1 under controlled growth conditions as compared to wild-type tobacco. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
High-resolution imaging of chlorophyll a fluorescence from intact tobacco leaves was used to compare the quantum yield of PSII electron transport in the chloroplasts of guard cells with that in the underlying mesophyll cells. Transgenic tobacco plants with reduced amounts of Rubisco (anti-Rubisco plants) were compared with wild-type tobacco plants. The quantum yield of PSII in both guard cells and underlying mesophyll cells was less in anti-Rubisco plants than in wild-type plants, but closely matched between the two cell types regardless of genotype. CO2 assimilation rates of anti-Rubisco plants were 4.4 micromol m(-2) s(-1) compared with 17.3 micromol m(-2) s(-1) for the wild type, when measured at a photon irradiance of 1000 micromol m(-2) s(-1) and ambient CO2 of 380 micromol mol(-1). Despite the large difference in photosynthetic capacity between the anti-Rubisco and wild-type plants, there was no discernible difference in the rate of stomatal opening, steady-state stomatal conductance or response of stomatal conductance to ambient CO2 concentration. These data demonstrate clearly that the commonly observed correlation between photosynthetic capacity and stomatal conductance can be disrupted in the long term by manipulation of photosynthetic capacity via antisense RNA technology. It was concluded that stomatal conductance is not directly determined by the photosynthetic capacity of guard cells or the leaf mesophyll.  相似文献   

16.
The photoprotective role of carotenoids in higher plants   总被引:16,自引:0,他引:16  
Carotenoids have two important roles in photosynthetic organisms. First, they act as accessory light-harvesting pigments, effectively extending the range of light absorbed by the photosynthetic apparatus. Secondly, they perform an essential photoprotective role by quenching triplet state chlorophyll molecules and scavenging singlet oxygen and other toxic oxygen species formed within the chloroplast. Only recently an additional, novel, protective role has been proposed for the carotenoid zeaxanthin, involving the dissipation of harmful excess excitation energy under stress conditions. Zeaxanthin may be formed through de novo synthesis in response to long-term environmental stress, and through the rapid enzymic de-epoxidation of the carotenoid violaxanthin (the xanthophyll cycle) in response to short-term alterations in the plant's light environment. Interspecific differences occur in the ability of plants and algae to produce zeaxanthin under stress conditions, and hence the ability to photoprotect the photosynthetic apparatus through this means varies from species to species. The ability of a plant to respond to light-mediated environmental stress by producing zeaxanthin may therefore affect, at least in part, the ability of that plant to inhabit or colonise certain habitats (e.g. sun or shade conditions).  相似文献   

17.
Green algal lichens, which were able to form zeaxanthin rapidly via the de-epoxidation of violaxanthin, exhibited a high capacity to dissipate excess excitation energy nonradiatively in the antenna chlorophyll as indicated by the development of strong nonphotochemical quenching of chlorophyll fluorescence (FM, the maximum yield of fluorescence induced by pulses of saturating light) and, to a lesser extent, FO (the yield of instantaneous fluorescence). Blue-green algal lichens which did not contain any zeaxanthin were incapable of such radiationless energy dissipation and were unable to maintain the acceptor of photosystem II in a low reduction state upon exposure to excessive photon flux densities (PFD). Furthermore, following treatment of the thalli with an inhibitor of the violaxanthin de-epoxidase, dithiothreitol, the response of green algal lichens to light became very similar to that of the blue-green algal lichens. Conversely, blue-green algal lichens which had accumulated some zeaxanthin following long-term exposure to higher PFDs exhibited a response to light which was intermediate between that of zeaxanthin-free blue-green algal lichens and zeaxanthin-containing green algal lichens. Zeaxanthin can apparently be formed in blue-green algal lichens (which lack the xanthophyll epoxides, i.e. violaxanthin and antheraxanthin) as part of the normal biosynthetic pathway which leads to a variety of oxygenated derivatives of β-carotene during exposure to high light over several days. We conclude that the pronounced difference in the capacity for photoprotective energy dissipation in the antenna chlorophyll between (zeaxanthin-containing0 green algal lichens and (zeaxanthin-free) blue-green algal lichens is related to the presence or absence of zeaxanthin, and that this difference can explain the greater susceptibility to high-light stress in lichens with blue-green phycobionts.  相似文献   

18.
High-resolution images of the chlorophyll fluorescence parameter Fq'/Fm' from attached leaves of commelina (Commelina communis) and tradescantia (Tradescantia albiflora) were used to compare the responses of photosynthetic electron transport in stomatal guard cell chloroplasts and underlying mesophyll cells to key environmental variables. Fq'/Fm' estimates the quantum efficiency of photosystem II photochemistry and provides a relative measure of the quantum efficiency of non-cyclic photosynthetic electron transport. Over a range of light intensities, values of Fq'/Fm' were 20% to 30% lower in guard cell chloroplasts than in mesophyll cells, and there was a close linear relationship between the values for the two cell types. The responses of Fq'/Fm' of guard and mesophyll cells to changes of CO2 and O2 concentration were very similar. There were similar reductions of Fq'/Fm' of guard and mesophyll cells over a wide range of CO2 concentrations when the ambient oxygen concentration was decreased from 21% to 2%, suggesting that both cell types have similar proportions of photosynthetic electron transport used by Rubisco activity. When stomata closed after a pulse of dry air, Fq'/Fm' of both guard cell and mesophyll showed the same response; with a marked decline when ambient CO2 was low, but no change when ambient CO2 was high. This indicates that photosynthetic electron transport in guard cell chloroplasts responds to internal, not ambient, CO2 concentration.  相似文献   

19.
Summary Leaves from two species, Euonymus kiautschovicus and Arctostaphylos uva-ursi, with a variety of different orientations and exposures, were examined in the field with regard to the xanthophyll cycle (the interconversion of three carotenoids in the chloroplast thylakoid membranes). East-, south-, and west-facing leaves of E. kiautschovicus were sampled throughout the day and all exhibited a pronounced and progressive conversion of violaxanthin to zeaxanthin, followed by a reconversion of zeaxanthin to violaxanthin later in the day. Maximal levels of zeaxanthin and minimal levels of violaxanthin were observed at the time when each leaf (orientation) received the maximum incident light, which was in the morning in east-facing, midday in southfacing, and in the afternoon in west-facing leaves. A very slight degree of hysteresis in the removal of zeaxanthin compared to its formation with regard to incident light was observed. Leaves with a broader range of orientations were sampled from A. uva-ursi prior to sunrise and at midday. All of the examined pigments (carotenoids and chlorophylls) increased somewhat per unit leaf area with increasing total daily photon receipt. The sum of the carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, increased more strongly with increasing growth light than any other pigment. In addition, the amounts of zeaxanthin present at midday also increased markedly with increasing total daily photon receipt. The percentage of the xanthophyll cycle that was converted to zeaxanthin (and antheraxanthin) at peak irradiance was very large (approximately 80%) in the leaves of both E. kiautschovicus and A. uva-ursi. The daily changes in the components of the xanthophyll cycle that paralleled the daily changes in incident light in the leaves of E. kiautschovicus, and the increasing levels of the xanthophyll cycle components with total daily photon receipt in the leaves of A. uva-ursi, are both consistent with the involvement of zeaxanthin (i.e. the xanthophyll cycle) in the photoprotection of the photosynthetic apparatus against damage due to excessive light.Abbreviations A antheraxanthin - EPS epoxidation state of the xanthophyll cycle=(V+0.5A)/(V+A+Z) - PFD photon flux density (400–700 nm) - PFDi photon flux density incident upon the upper leaf surface - Tair air temperature - TL leaf temperature - V violaxanthin - Z zeaxanthin  相似文献   

20.
Physiology and xanthophyll cycle activity of Nannochloropsis gaditana   总被引:2,自引:0,他引:2  
The physiology of the violaxanthin-producing microalga Nannochloropsis gaditana is examined and the effect of environmental factors on the growth and cellular pigment content investigated in batch and continuous cultures. N. gaditana is slow-growing, with a maximum specific growth rate of 0.56 day(-1) at 23 degrees C. The xanthophyll cycle is present in this strain, but has a much lower activity than in higher plants and other species of Nannochloropsis. At 30 degrees C, under high light (1500 micromol photons m(-2) s(-1)), 33% of the violaxanthin pool was deepoxidated to antheraxanthin (76%) and zeaxanthin (24%) over 60 min. Addition of iodoacetamide dramatically affected the xanthophyll cycle activity: 50% of the violaxanthin was replaced by zeaxanthin (90%) within 30 min. This was attributed to an increase in membrane fluidity following iodoacetamide addition, resulting in a larger pool of violaxanthin available for conversion. Batch culture studies showed that a decrease in irradiance (from 880 to 70 micromol photons m(-2) s(-1)) can increase chlorophyll a and violaxanthin content by as much as 80% and 60%, respectively. Continuous cultures indicated that violaxanthin is a growth-rate-dependent product, but the violaxanthin content is less affected by dilution rate (in the range 0.12 to 0.72 day(-1)) and pH (6.8 to 7.8) than chlorophyll a. The optimum conditions for growth and violaxanthin production in continuous culture were found to occur at a dilution rate of 0.48 day(-1), a temperature of between 24 degrees C and 26 degrees C, and pH in the range 7.1 to 7.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号