首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The ability of a genotype to respond to changes in the environment through modifications in the phenotype is adaptive when the plastic genotypes attain a higher fitness than non-plastic genotypes. In this study we examine whether parasite traits involved in host infection exhibit adaptive phenotypic plasticity to the heterogeneous host microenvironment. We focused on a host-parasite relationship characterized by the holoparasitic mistletoe Tristerix aphyllus and the cactus host Echinopsis chilensis. Unlike most mistletoes, whose seeds are deposited on the host branches, seeds of T. aphyllus are often deposited on the spines of the cactus. The extremely long radicles of T. aphyllus have been suggested to represent a parasite adaptation to overcome the barriers to infection imposed by the spines of cacti. However, plastic rather than canalized phenotypes may represent a better strategy in changing environments. We evaluated whether T. aphyllus exhibits adaptive plasticity in radicle length through a sire half-sib genetic design under field conditions in two contrasting microenvironments (seeds deposited on spines 4 and 28 mm from the host surface). We used phenotypic and genotypic selection analyses to evaluate the relationship between radicle length and seed establishment. Our results revealed significant phenotypic plasticity for radicle length and family level variation among maternal but not paternal families. Short radicles and large seeds were favored in the short-distance environment, and long radicles were favored in the long-distance environment, suggesting that no single optimal phenotype exists for T. aphyllus. The observation that the heritability of radicle length and seed mass did not differ from zero was consistent with this finding. Overall, our results indicate that plastic rather than long radicles seem to be a better parasite strategy to overcome the microenvironmental heterogeneity imposed by host defensive traits.  相似文献   

2.
Resistance and tolerance are considered to be different plant strategies against disease. While resistance traits prevent hosts becoming parasitized or reduce the extent of parasitism, tolerance traits reduce the fitness-impact of parasitism on infected hosts. Theoretical considerations predict that in some circumstances mutual redundancy will give hosts with either high resistance or high tolerance a fitness advantage over hosts that exhibit both of these traits together. However, empirical evidence has provided mixed results. In this paper, I describe the pattern of phenotypic selection imposed by the holoparasitic mistletoe Tristerix aphyllus upon resistance (spine length) and tolerance (branching) traits in the cactus Echinopsis chilensis. Results indicate that branching was an efficient compensatory mechanism, reducing 75.5% of the fitness-impact attributable to parasitism. Even though both traits showed a negative correlation, as expected from the presence of allocation costs between strategies, no correlational selection coefficient was significant indicating that selection did not favor alternative combinations of traits. Consequently, I did not find evidence for selection promoting mutually exclusive defense strategies against the mistletoe, which suggests that tolerance and resistance traits may coexist stably in populations of E. chilensis.  相似文献   

3.
Consideration of complex geographic patterns of reciprocal adaptation has provided insight into new features of the coevolutionary process. In this paper, we provide ecological, historical, and geographical evidence for coevolution under complex temporal and spatial scenarios that include intermittent selection, species turnover across localities, and a range of trait match/mismatch across populations. Our study focuses on a plant host–parasitic plant interaction endemic to arid and semiarid regions of Chile. The long spines of Chilean cacti have been suggested to evolve under parasite-mediated selection as a first line of defense against the mistletoe Tristerix aphyllus. The mistletoe, in turn, has evolved an extremely long morphological structure that emerges from the seed endosperm (radicle) to reach the host cuticle. When spine length was traced along cactus phylogenies, a significant association between spine length and parasitism was detected, indicating that defensive traits evolved in high correspondence with the presence or absence of parasitism in two cactus lineages. Assessment of spine-radicle matching across populations revealed a potential for coevolution in 50% of interaction pairs. Interestingly, hot spots for coevolution did not distribute at random across sites. On the contrary, interaction pairs showing high matching values occur mostly in the northern distribution of the interaction, suggesting a geographical structure for coevolution in this system. Only three sampled interaction pairs were so mismatched that reciprocal selection could not occur given current trait distributions. Overall, different lines of evidence indicate that arms-race coevolution is an ongoing phenomenon that occurs in the global system of interconnected populations.  相似文献   

4.
Wecompared the effects of two mechanisms of fruit processing (defecationversus regurgitation) on seed germination andestablishmentin a mistletoe-bird system (Tristerix aphyllusMimus thenca). Despite regurgitation being more frequentlyobserved than defecation, radicle of defecated seeds grew longer than that ofregurgitated ones. In this fruit-seed disperser interaction, we demonstrate theimportance of different mechanisms of fruit processing for cactus infectionefficiency by the mistletoe.  相似文献   

5.
Sophie Petit 《Biotropica》1997,29(2):214-223
Two bat species, Leptonyrteris curasoae and Glossophaga longirostris, are the principal pollinators of at least two of the three species of columnar cacti that grow on the semiarid island of Curaçao, Netherlands Antilles. I examined the importance of the cacti in the diets of the bats and found that 85–91 percent of their diet samples contained cactus pollen and seeds. At least 43 percent of the samples from each species contained cactus pollen andlor seeds exclusively. Leptonycteris curasoae consumes nectar and pollen of Ceiba pentandra and Agave spp. at the beginning of the dry season and G. longirostris also consumes a few other plant products in the wet season, but both bat species depend nutritionally on cacti. Female bats give birth to one pup per year, and the periods of parturition and lactation in each species correspond to peaks in the reproductive phenology of the two most abundant columnar cactus species. From personal observations and a review of the literature, I determined that bats were unlikely to fly to the mainland to feed, although L. curasoae may do so. I conclude that the interdependence of bats and cacti is suggestive of coevolution, and that columnar cacti are critical for the survival and persistence of nectar-feeding bats on Curaçao.  相似文献   

6.
The nurse-protégé hypothesis states that adult plants of one species provide micro-environmental conditions that favor the establishment of seedlings of a second species with no effect for the first species. Several studies suggest this effect should be prevalent in arid and semiarid zones as adult plants often provide shelter from low moisture and high temperature. Echinopsis chiloensis and Eulychnia acida are endemic columnar cacti that inhabit the arid and semiarid zones of Chile. In this study, we examined the pattern of recruitment of both cactus species at Reserva Nacional Las Chinchillas, located ~60 km east from the Pacific coast. We determined number, growth and survivorship of young cacti (<30 cm height) through biannual monitoring between 2009 and 2012 in microhabitats that strongly differ in their abiotic variables (minimum and maximum temperature and mean relative humidity, moisture content, and physical and chemical soil characteristics), under five different shrub species and in open spaces, and examined the association of these cacti with potential nurse plants. Most young cacti occurred under shrubs, the microhabitat having the lowest mean and maximum temperatures and the highest relative humidity. In particular, E. chiloensis and E. acida were found under the shrubs Flourensia thurifera and Bahia ambrosioides, respectively, in a higher frequency than expected by chance, suggesting that these shrub species behave as nurse plants through species-specific effects than are not accounted for by differences in soil nutrients.  相似文献   

7.
Drosophila buzzatii and D. koepferae coexist in the arid lands of southern South America and exploit different types of cactus as breeding hosts. The former prefers to lay eggs on the rotting pads of prickly pears (genus Opuntia) whereas D. koepferae exhibits greater acceptance for columnar cacti (e.g., Echinopsis terschekii). Here, we demonstrate that the rearing cacti affect male mating success, flies reared in each species’ preferred host exhibited enhanced mating success than those raised in secondary hosts. Opuntia sulphurea medium endows D. buzzatii males with greater mating ability while D. koepferae males perform better when flies develop in Echinopsis terschekii. These effects are not mediated through body size, even in D. buzzatii whose body size happens to be affected by the rearing cacti. This scenario, which is consistent with the evolution of host specialization and speciation through sensory drive, emphasizes the importance of habitat isolation in the coexistence of these cactophilic Drosophila.  相似文献   

8.
The Atacama Desert is one of the most stressful environments worldwide and represents a strong barrier for the establishment of native and non-native plants. In this study, we report the establishment of a non-native annual plant through facilitation by a native endemic cactus in a relatively undisturbed coastal area in north-central Chile. Soil collected under Eulychnia acida contained more available nutrients (N, P and K), water, and soluble salts than soils collected away from E. acida. Co-occurrence analyses showed a strong positive spatial association (facilitation) between the native cactus E. acida and the non-native annual, Mesembryanthemum crystallinum. The aboveground biomass of M. crystallinum individuals was 4-fold higher under the influence of E. acida. Native halophytes occasionally shared the cactus understory with the non-native species, but dominant native shrubs and perennial herbs did not co-occur with the cactus at scales of 1 and 4 m2. All these results support facilitation of the native cactus on the non-native herb. The combination of direct and indirect positive effects could explain the assembly of the non-native annual plant in these undisturbed areas of the Atacama Desert and have major implications on M. crystallinum capacity to colonize new areas.  相似文献   

9.
The mistletoe Tristerix verticillatus (Loranthaceae) parasitizes within a small area of the Yerba Loca Nature Sanctuary near Santiago, Chile, three co‐occurring hosts: Schinus montanus (Anacardiaceae), Fabiana imbricata (Solanaceae) and Berberis montana (Berberidaceae). Previous studies suggest that T. verticillatus may be favoured when parasitizing S. montanus relative to the other two host species. We hypothesize that infection of S. montanus is not proportional to its local abundance or appearance, that S. montanus is more intensively parasitized than other available hosts, and that host provenance is a determinant of the fate of the infecting seed. We compare the incidence of infection of T. verticillatus in relation to local availability and appearance variables, and the intensity of infection of T. verticillatus, on the three co‐occurring host species. We then test the effects of host provenance on mistletoe seed establishment success with a seed cross inoculation experiment varying the donor and receptor hosts. Finally, we test whether there are differences in establishment success between manually processed seeds and seeds defecated by the avian disperser Mimus thenca (Passeriformes: Mimidae). Our results show that the three hosts have an aggregated spatial distribution. Schinus montanus was parasitized at a higher rate than expected by its local availability and appearance, and inoculated seeds showed differential development depending on the origin of the seeds: seeds from T. verticillatus parasitizing S. montanus inoculated to S. montanus twigs showed higher germination and lower mortality than seeds from T. verticillatus parasitizing F. imbricata inoculated to S. montanus twigs. Furthermore, seeds defecated by the avian disperser, M. thenca, had higher adherence and reduced mortality when compared to manually processed seeds. The disproportional host infection found is discussed in terms of the differential establishment of mistletoe seeds, morphological characteristics of hosts and the behaviour of dispersing birds.  相似文献   

10.
Many plants produce structural defenses to deter feeding by herbivores. However, many previous studies testing whether spines are effective at defending against mammalian herbivores have produced equivocal results. These ambiguous results are hypothesized to be due to herbivore counter‐adaptations. We investigated potential counter‐adaptations in a population of white‐throated woodrats Neotoma albigua that specialize on cactus by investigating feeding behavior and preference for cacti varying in spinescence. Neotoma albigula exhibited a unique behavior of clipping cactus spines, which renders these defenses ineffective. Strikingly, these woodrats chose to collect spiny cacti over experimentally de‐spined cacti, demonstrating that spines act as a proximal cue that attracts woodrats. This attraction is likely due to the higher protein and lower fiber content of spiny cacti compared to naturally non‐spiny cacti. Thus, the ‘defensive’ spines of cacti are ineffective against a specialist herbivore and instead serve as an indicator of nutritional quality that promotes herbivory. Our results support the ‘rule‐of‐thumb’ hypothesis of foraging, which states that herbivores forage according to obvious visual cues that are indicative of nutritional content, rather than sampling nutrient composition of plants. We propose that specialist herbivores are unique systems in which to study other counter‐adaptations to structural defenses and ‘rule‐of‐thumb’ foraging strategies.  相似文献   

11.
Summary Two small Sonoran Desert cacti, Mammillaria microcarpa and Echinocereus englemannii, are commonly found beneath canopies of the larger, tree-like cactus Opuntia fulgida. The mechanism leading to this distribution pattern is incidental to the mode of reproduction in O. fulgida. Opuntia fulgida propagates by means of easily-detached, spine-covered stem joints that accumulate beneath the parent plant. These accumulations of spines apparently deter mammalian herbivores that otherwise consume succulent tissues of the smaller cacti. Such incidental effects are little studied, but they may contribute substantially to structure within plant communities.  相似文献   

12.
The considerable floral diversity present in the cactus family has often been associated with the specificity of its pollinators. However, many cactus pollination systems are generalized as their flowers are pollinated by a wide spectrum of animals. For example, cactus species with white flowers, nocturnal anthesis and extended floral cycles would present generalized pollination systems in which both nocturnal and diurnal visitors could be effective pollinators. In this article, we tested this hypothesis by studying the pollination biology of Echinopsis schickendantzii, an Andean cactus with sphingophilous flowers. In addition, we evaluated whether the cactus’s pollination system is complementary or redundant regarding the relative contributions of nocturnal and diurnal pollinators. Specifically, we studied the floral cycle, the reproductive system and the pollination effectiveness of floral visitors. The flowers of E. schickendantzii are self-incompatible; they opened at crepuscule and have an extended floral cycle. Moths were frequent visitors at night, whereas bees were frequent visitors during the day; both were effective pollinators of the cactus. Our results indicated that the flowers of this species present phenotypic, functional and ecological generalization, and their fruit set is determined by the contributions of both pollinator functional groups, i.e., they have complementary pollination systems. These results support the hypothesis that cacti in the extra-tropical deserts of South America have generalized pollination systems.  相似文献   

13.
Parasitic plants often have a strong fitness‐impact on their plant hosts through increased host mortality and reduced or complete suppression of reproduction. Tristerix corymbosus (Loranthaceae) is a hemiparasitic mistletoe that infects a wide range of host species along its distribution range. Among such species, Rhaphithamnus spinosus (Verbenaceae) is a frequent host with a flowering and fruiting season partially synchronized with mistletoe reproductive phenology. As parasitized hosts have, in principle, a larger flower display and fruit crop size than non‐parasitized hosts, we examined whether host and parasite reproductive synchrony make infected hosts more attractive for pollinators and seed dispersers than uninfected hosts. Our results showed that pollinator visit rates did not differ between parasitized and non‐parasitized hosts. Conversely, seed rain was higher in parasitized than non‐parasitized individuals. The number of seeds fallen under non‐parasitized plants was spatially associated with crop size, while parasitized plants did not show such association. Finally, the number of seedlings of R. spinosus was significantly larger near parasitized than non‐parasitized hosts. Our results suggest that the presence of the mistletoe might be responsible of the higher reproductive success showed by the parasitized fraction of R. spinosus. This effect, however, seems to be related to seed dispersal processes rather than pollination effects.  相似文献   

14.
Park S. Nobel 《Oecologia》1980,47(1):10-15
Summary A computer model predicted the minimum stem surface temperature, which generally occurred at the apex, for various species of cacti under a particular set of environmental conditions. Based on stem mass, spines, and apical pubescence for the four Ferocactus species found in the southwestern United States, F. acanthodes had the highest minimum apical temperatures and hence was predicted to range the furthest north, F. wizlizenii next, then F. covillei, and finally F. viridescens, in agreement with field observations. Direct measurement of apical temperatures at night showed that F. viridescens was about 2°C colder than a side-by-side F. acanthodes, in agreement with the model. The simulated apical temperature of Trichocereus chilensis increased about 0.3°C for each 50 cm increase in height up to 2 m; observations at a high elevation site in central Chile showed that the freezing damage progressively halved over this sequence of height intervals. The upper elevational limit of Eriosyce ceratistes and T. chilensis at different latitudes from 29°S to 35°S indicated that the populations were responsive to changes of only 0.1°C. Such temperature sensitivities underscore the importance of morphological differences in establishing the low temperature limits on the ranges of cacti in particular and plants in general.  相似文献   

15.
Question: Factors influencing seedling establishment are known to vary between open sites and those protected by plant cover. In many desert regions, protected microhabitats below shrubs are essential for establishment of many cactus species. Very little is known about these factors for Andean cacti and how the importance of vegetation cover varies with cactus species. Are Andean cacti associated more frequently to vegetation cover than to open ground? Are they associated to certain shrub species? Is the distributional pattern in relation to cover similar for different cactus species? In what microhabitat (below or away from shrubs) are cactus seeds more abundant? These questions are addressed for the case of an Andean semi‐desert. Location: Semi‐arid tropical Andes, La Paz department, Bolivia. Methods: We examined 132 isolated shrubs = 50 cm along a line across two microhabitats: areas below and away from shrubs/trees. Shrub crown size was measured. The among‐shrub samples were taken from open spaces contiguous to each of the sampled shrubs. In both microhabitats, all cactus species were recorded. The cardinal direction of the cacti was also registered. Correlation between canopy diameter and number of beneficiaries was evaluated for Prosopis flexuosa. The cactus seed bank in each microhabitat was also studied. Results and Conclusions: The four cactus species found behaved differently in relation to shrub canopies. These distributional differences could be due to differences in growth form. Columnar cacti apparently need the shade of shrubs. Only the columnar species is able to grow near the base of the tallest nurse species. The opuntioid cacti studied seem more facultative: although apparently preferring shrub un‐der‐canopies, they are able to establish in open ground. The globose cactus is the most indifferent to the presence of plant cover. These patterns parallel others found in North America. The capacity of different cacti to appear in open spaces could be related to vegetative propagation, and not necessarily to seedling tolerance of heat.  相似文献   

16.
Located in central South America, the Chaco is a large subtropical dry forest characterized by plants with xeromorphic features, including numerous cacti. In the Brazilian Chaco at the northeasternmost part of the Chaquenian region, Echinopsis rhodotricha (Cactaceae, Trichocereeae) is one of the species threatened by intense deforestation caused by expanding pastureland. This study characterizes the microsatellite loci isolated from E. rhodotricha and cross-amplification in thirteen other cactus species. Twelve microsatellite loci were developed from an enriched genomic library. Eight of these were polymorphic and characterized in 48 individuals from three E. rhodotricha populations. The loci showed a mean of 3.2 alleles per locus and overall levels of expected and observed heterozygosities ranging from 0.00 to 0.83 and 0.00 to 0.66, respectively. Five loci showed significant departures from the Hardy–Weinberg equilibrium and also exhibited signs of null alleles. Cross-amplification in other Cactaceae species was successful, ranging from one (Ferocactus latispinus, Cacteae and Harrisia adscendens, Trichocereeae) to twelve loci (Echinopsis calochlora, Trichocereeae). The development of these microsatellite markers will contribute to investigations of population structure, genetic diversity, and gene flow in E. rhodotricha populations, as well as in other cactus species, providing information useful for the creation and delimitation of conservation areas in the Brazilian Chaco region.  相似文献   

17.
We have recently described a hitherto unsuspected catechyl lignin polymer (C‐lignin) in the seed coats of Vanilla orchid and in cacti of one genus, Melocactus (Chen et al., Proc. Natl. Acad. Sci. USA. 2012, 109, 1772‐1777.). We have now determined the lignin types in the seed coats of 130 different cactus species. Lignin in the vegetative tissues of cacti is of the normal guaiacyl/syringyl (G/S) type, but members of most genera within the subfamily Cactoidae possess seed coat lignin of the novel C‐type only, which we show is a homopolymer formed by endwise β–O–4‐coupling of caffeyl alcohol monomers onto the growing polymer resulting in benzodioxane units. However, the species examined within the genera Coryphantha, Cumarinia, Escobaria and Mammillaria (Cactoideae) mostly had normal G/S lignin in their seeds, as did all six species in the subfamily Opuntioidae that were examined. Seed coat lignin composition is still evolving in the Cactaceae, as seeds of one Mammillaria species (M. lasiacantha) possess only C‐lignin, three Escobaria species (E. dasyacantha, E. lloydii and E. zilziana) contain an unusual lignin composed of 5‐hydroxyguaiacyl units, the first report of such a polymer that occurs naturally in plants, and seeds of some species contain no lignin at all. We discuss the implications of these findings for the mechanisms that underlie the biosynthesis of these newly discovered lignin types.  相似文献   

18.
Two Drosophila species, D. buzzatti and D. aldrichi, coexist on several species of Opuntia cacti in Australia, primarily on O. tomentosa and O. streptacantha in the northern part of the cactus distribution, and on O. stricta in the south. Thorax length of field-collected adults was less, and the variance in length greater, than that for flies reared on simulated rots in the laboratory, indicating that these species are affected by crowding in nature. A larval performance index, measured on simulated cactus rots at low, moderate and high densities in single-species cultures, and at moderate and high densities in mixed-species cultures, was used to compare the relative intensity of intra- and interspecific competition at the same total larval density per 5 g necrotic cactus. Larval performance of both fly species was greatest on O. streptacantha, intermediate on O. tomentosa, and least on O. stricta in both single-species and mixed-species cultures. On O. stricta, the performances of D. aldrichi and D. buzzatii were not different when in single-species cultures, but that of D. aldrichi decreased significantly in mixed-species cultures. On the other two cactus species, the performances of D. aldrichi and D. buzzattii were not different in mixed-species cultures. The order of preferences by adult females for the cacti differed from that for larval performance, with females of both species prefering O. stricta. Analysis of microbial numbers growing on the cacti showed little difference among cacti at the rot age used for testing adult preference, but later growth was greater on O. tomentosa and O. streptacantha, the cacti that best supported larvae. Differential larval performance on O. stricta may contribute to the rare presence of D. aldrichi in the southern part of the cactus distribution, while the superior quality of O. tomentosa and O. streptacantha (larger rot size and higher microbial concentration) may reduce competition and facilitate cocxistence of the fly species in the north.  相似文献   

19.
Rock-degrading endophytic bacteria in cacti   总被引:1,自引:1,他引:0  
A plant–bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2, produce volatile and non-volatile organic acids, and reduce rock particle size to form mineral soil. This study revealed the presence of large populations of culturable endophytic bacteria inside the seeds extracted from wild plants, from seeds extracted from the guano of bats feeding on cactus fruit, in seedlings growing from these seeds, in the pulp of fruit, and in small, mature wild plants, and are comparable in size to populations of endophytic populations in some agricultural crops. The dominant culturable endophytes were isolates of the genera Bacillus spp., Klebsiella spp., Staphylococcus spp., and Pseudomonas spp. Based on partial sequencing of the 16s rRNA gene, the isolated strains had low similarity to known strains in these genera. However, these strains have higher molecular similarity among endophytes obtained from seeds, endophytes from roots, and some bacterial strains from the rhizoplane. Seedlings developed from seeds with endophytes contain the similar species of endophytes in their shoots, possibly derived from the seeds. This study shows the involvement of endophytic bacteria in rock weathering by cacti in a hot, subtropical desert and their possible contribution to primary colonization of barren rock. This study proposes that cacti capable of acquiring diverse populations of endophytes may give them an evolutionary advantage to gain a foothold on highly uncompromising terrain.  相似文献   

20.
Neobuxbaumia macrocephala is a long-lived columnar cactus endemic to the Tehuacán-Cuicatlán Valley in south-central Mexico. This plant has a very restricted distribution and few recruitment events have been detected in its populations. In this study, we analyze the N. macrocephala demographic pattern using a projection matrix in order to determine the main limiting factors of this species. To accomplish this goal, we compare our results with those obtained for another species of the same genus, N. tetetzo. Considering that both species inhabit the same valley, we believe that this comparative study will offer insights into the main demographic limitations of N. macrocephala. Results showed that these species of columnar cacti have similar demographic patterns in which survival is the process with the highest relative contribution to λ, followed by growth and reproduction. Of all the life cycle stages, seeds and seedlings have the lowest survival probabilities due to a high mortality caused by seed predation and effects of direct solar radiation on germinated seeds. The estimated growth rates indicate that populations of these species of Neobuxbaumia are in a numerical equilibrium. With respect to reproduction, N. macrocephala produce a lower number of seeds per plant than N. tetetzo. This low level of sexual reproduction may decrease the probability of establishment of new individuals in N. macrocephala populations. It is suggested that pollen limitation and pre-dispersal seed predation could be some factors that limit the distribution and abundance of this columnar cactus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号