首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal changes of ascorbate peroxidase and monodehydroascorbateradical reductase activities were studied in foliar tissuesof Norway spruce (Picea abies L.). In mature needles, APX activitiesdid not show seasonal fluctuations and were similar to thosefound in resting buds. Monodehydroascorbate radical reductaseactivity was higher in needles than in buds and higher in winterthan in summer. Maximum activities of both enzymes were foundbefore bud break and minimum activities in newly formed needles.When spruce seedlings were exposed to an artifical frost eventof –5°C for one night in spring, ascorbate peroxidaseactivity declined in young needles before the onset of visibleinjury but corresponding to a sudden upsurge in lipid peroxidation.After one week, some shoots showed severe symptoms of injury,some were slightly injured and others did not show any visibleinjury. In lethally injured needles, antioxidative protection(ascorbate peroxidase, monodehydroascorbate radical reductase,glutathione reductase, glutathione, ascorbate, superoxide dismutase)had collapsed. Surviving needles showed a coordinated increasein all components of the antioxidative system suggesting anefficient induction of defense systems. However, enhanced protectionwas observed only transiently. In fall, needles that had beenexposed to frost in spring contained significantly less antioxidantsthan unstressed needles indicating that unseasonal frost causedmemory effects. (Received September 16, 1995; Accepted May 28, 1996)  相似文献   

2.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

3.
Chlorotic and green needles from Norway spruce (Picea abies L.) trees were sampled in the Calcareous Bavarian Alps in winter. The needles were used for analysis of the mineral and pigment contents, the levels of antioxidants (ascorbate, glutathione), and the activities of protective enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate radical reductase, dehydroascorbate reductase, glutathione reductase). In addition, the activities of two respiratory enzymes (glucose-6-phosphate dehydrogenase, NAD-malate dehydrogenase), which might provide the NADPH necessary for functioning of the antioxidative system, were determined. We found that chlorotic needles were severely manganese deficient (3 to 6 micrograms Mn per gram dry weight as compared with up to 190 micrograms Mn per gram dry weight in green needles) but had a similar dry weight to fresh weight ratio, had a similar protein content, and showed no evidence for enhanced lipid peroxidation as compared with green needles. In chlorotic needles, the level of total ascorbate and the activities of superoxide dismutase, monodehydroascorbate radical reductase, NAD-malate dehydrogenase, and glucose-6-phosphate dehydrogenase were significantly increased, whereas the levels of ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase, and glutathione were not affected. The ratio of ascorbate to dehydroascorbate was similar in both green and chlorotic needles. These results suggest that in spruce needles monodehydroascorbate radical reductase is the key enzyme involved in maintaining ascorbate in its reduced state. The reductant necessary for this process may have been supplied at the expense of photosynthate.  相似文献   

4.
Three oat (Avena sativa L.) lines which show differential responses to attack by the biotrophic fungal pathogen Blumeria graminis DC f. sp. avenae Marchal, which causes powdery mildew, were studied: Maldwyn shows the strongest resistance in adult plants; Selma shows greater susceptibility; while a Selma × Maldwyn hybrid, OM1387, has a similar degree of resistance to Maldwyn. Host responses to pathogen attack were complete 48 h after inoculation but largely accomplished within the first 24 h, the point when material was taken for enzyme and metabolic assays. In Maldwyn and OM1387 about 80% of attacked cells showed localized autofluorescent host-cell responses but this fell to less than 20% in Selma. A cytoplasmic marker enzyme, glucose 6-phosphate dehydrogenase, was used to determine contamination of the apoplastic extracts by cellular components. After correction for cytoplasmic contamination, up to 4% of the total foliar activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were detected in the apoplast. The apoplast contained about 2% of the total foliar glutathione pool and dehydroascorbate, but not ascorbate, at values amounting to 10% of the total foliar ascorbate plus dehydroascorbate pool. Twenty-four hours after inoculation the foliar or apoplastic ascorbate pools were similar in inoculated and control leaves. Foliar catalase activity increased in both susceptible and resistant responses. Resistance correlated with increased total foliar glutathione, an increase in the ratio of reduced to oxidized glutathione and with decreased total activities of foliar ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. Received: 17 April 1998 / Accepted: 28 August 1998  相似文献   

5.
The long-term effect of limiting soil nitrogen (N) availability on foliar antioxidants, thermal energy dissipation, photosynthetic and respiratory electron transport, and carbohydrates was investigated in Spinacia oleracea L. Starch, sucrose, and glucose accumulated in leaves of N-limited spinach at predawn, consistent with a downregulation of chloroplast processes by whole-plant sink limitation in response to a limited supply of N-based macromolecules throughout the plant. On a leaf-area or dry-weight basis, levels of chlorophyll, carotenoid pools, photosynthetic electron transport capacity, as well as activities for the predominantly chloroplast-localized antioxidant enzymes ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) were much lower in N-limited versus N-replete plants. When expressed on a chlorophyll basis, foliar levels of all of these parameters were similar in N-replete versus N-limited plants. However, on a total-protein basis, antioxidant enzyme activities were higher in N-limited plants. Nitrogen-limited spinach showed higher levels of thermal energy dissipation and of zeaxanthin and antheraxanthin at midday, as well as slightly higher ascorbate contents relative to chlorophyll. These results indicate that strong, long-term N limitation led not only to alterations in the balance between different processes but also to an overall downregulation of light collection, photosynthetic electron transport capacity, and chloroplast-based antioxidant enzymes. This is further supported by the finding that glucose-feeding of excised leaves led to strong concomitant decreases in photosynthetic electron transport capacity and ascorbate peroxidase activity. On a leaf-area basis, neither superoxide dismutase (EC 1.15.1.1) activity nor dark repiration rates showed a treatment effect. This indicates that overall mitochondrial electron transport activity does not decrease under long-term N limitation and is consistent with localization of an important fraction of foliar superoxide dismutase in mitochondria. Received: 19 March 1999 / Accepted: 13 April 1999  相似文献   

6.
The physiological effects of lanthanum(III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH.), alleviating the oxidative damage induced by PEG stress.  相似文献   

7.
Summary The levels of the water-soluble reductants ascorbic acid and glutathione and the activities of the enzymatic antioxidants superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate and dehydroascorbate reductases and glutathione reductase were determined in a fully habituated nonorganogenic sugarbeet callus line (considered a neoplasm) compared with a normal hormone-dependent callus of the same plant. Ascorbic acid was not recovered from either of the two calluses, irrespective of the technique used. Glutathione was titrated at a slightly higher level in the normal callus. Catalase activity was almost nonexistent in the habituated callus. The other enzymes (superoxide dismutase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and ascorbate peroxidase) were found to have higher activities in the habituated callus. The results are interpreted as a higher protection of the neoplastic habituated cells against oxygen-free radicals and hydroperoxide-dependent oxidations. Such strong scavenging properties of the habituated cell line could explain previous results already reported, namely the stimulation of cell division at the expense of cell differentiation.  相似文献   

8.
Activated oxygen and antioxidant defences in iron-deficient pea plants   总被引:7,自引:0,他引:7  
Iron (Fe) deficiency in pea leaves caused a large decrease (44–62&) in chlorophyll a, chlorophyll b and carotenoids, and smaller decreases in soluble protein (18&) and net photosynthesis (28&). Catalase, non-specific peroxidase and ascorbate peroxidase activities declined by 51& in young Fe-deficient leaves, whereas monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities remained unaffected. Ascorbate peroxidase activity was highly correlated (r2= 0. 99, P < 0. 001) with the Fe content of leaves, which allows its use as an indicator of the Fe nutritional status of the plant. Fe deficiency resulted in an increase of CuZn-superoxide dismutase but not of Mn-superoxide dismutase. The content of ascorbate decreased by only 24& and those of reduced and oxidized glutathione and vitamin E did not vary. The low-molecular-mass fraction of Fe-sufficient leaves contained 30–65 μg (g dry weight)?1 Mn. This concentration was 15–60 times greater than that of Fe and Cu in the same fraction, and was further enhanced (1. 5- to 2. 5-fold) by Fe deficiency without causing Mn toxicity. The concentration of catalytic Fe, that is, of Fe active for free radical generation, was virtually zero and that of catalytic Cu did not change with severe Fe deficiency. Because catalytic metals mediate lipid and protein oxidation in vivo, the above findings would explain why oxidatively damaged lipids and proteins do not accumulate in Fe-deficient leaves.  相似文献   

9.
To test the hypothesis that antioxidant systems flexibly adjust to short-term, diurnal fluctuations of ambient environmental conditions, ascorbate-related systems were studied over several day/night cycles in mature sun-acclimated leaves of field-grown beech trees ( Fagus sylvatica ). Light-dependent increases in the activities of ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate radical reductase (MDAR, EC 1.1.5.4) and glutathione reductase (GR, EC 1.6.4.2) were not observed. Lowest activities of APX and MDAR were found on hot, sunny days. A strong negative correlation occurred between APX activities and ambient temperatures suggesting that this enzyme was temperature- rather than light-regulated. In contrast to the enzymatic defences, ascorbate levels increased by about 30% under bright sunlight suggesting that protection from excess light is mediated via the adjustment of metabolites. Under these conditions the apparent electron transport rate exceeded the capacity for assimilation and the dehydroascorbate pool increased twofold. Since dehydroascorbate reductase activities were hardly detected, MDAR activities seemed to be the major enzyme to keep ascorbate in its reduced state. However, MDAR appeared to be insufficient to maintain the redox balance of the ascorbate pool under high light intensities in the field.  相似文献   

10.
The effect of magnesium (Mg2+)‐deficiency on the antioxidant responses of Capsicum annuum was investigated over a 60‐day period under controlled conditions. This Mg2+‐deficiency aimed to mimic the physiological conditions that plants may experience in the field. At each harvest time, five different leaf‐levels (L2 to L6) were distinguished. L2 and L6 correspond to the second and sixth youngest leaves, respectively. The following parameters were determined: Mg2+, chlorophyll and protein contents, total and redox pools of ascorbate and glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Under Mg2+‐deficiency, leaf Mg2+ contents decreased over time in all leaf‐levels except in the second youngest leaves (L2), where they remained constant at about 0.25% (dry weight basis). Mg2+‐deficiency led to an increase in the antioxidant enzyme activities concomitant with an increase in the ascorbate and glutathione pools, whereas total chlorophyll and soluble protein contents decreased. The L2 leaves showed an increase in glutathione reductase activity and in the ascorbate redox state whereas no difference was observed for the other parameters. Superoxide dismutase activities increased in L5 leaves from day 15 and, afterwards, in L3 to L5 leaves, irrespective of Mg2+ content. At day 30, glutathione reductase activities increased in L2 to L4 leaves and dehydroascorbate reductase activities in L4 leaves. At day 45, we observed an increase in the ascorbate peroxidase activities in L3 to L5 leaves. At the same time, ascorbate and glutathione pools increased in intermediate leaves, whereas chlorophyll content decreased in L3 and L4 leaves, and protein content decreased in L4 leaves. Results suggest that pepper leaves enhance their defence capacities against oxidative stress by increasing ascorbate more than glutathione synthesis. However, cells showed higher regeneration rates for the glutathione redox state than for the ascorbate redox state.  相似文献   

11.
臭氧浓度升高对油松抗氧化系统活性的影响   总被引:4,自引:0,他引:4  
以生长在开顶箱内的油松为试材,对高浓度臭氧(80 nmol·mol-1)条件下油松(Pinus tabulaeformis)针叶中超氧阴离子自由基(O2·)产生速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性与抗坏血酸(ASA)含量进行测定.结果表明:高浓度臭氧使O2·产生速率提高,H2O2 和MDA含量增加.ASA含量与SOD、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性在高浓度臭氧熏蒸的前期升高,随后下降并低于对照.说明生长季前期,油松抗氧化系统对高浓度臭氧存在适应性反应,但不能抵抗长期臭氧胁迫带来的氧化伤害.  相似文献   

12.
Seasonal dimorphism (summer/winter) has been so far studied only in a few plants and has been focused on summer drought stress. However, Thymus sibthorpii in the study area appears to be affected by winter chilling stress and not by summer drought stress. Thus, the winter leaves were thicker and more compact compared to the summer leaves and they had more stomata and peltate hairs, more sclerenchymatous fibers, vacuoles with phenolics, and chloroplasts than the summer leaves. In addition, their chloroplasts possessed large grana and starch grains. In the summer leaves, cell vacuoles in mesophyll did not contain phenolics, and chloroplasts were devoid of starch grains and had large plastoglobuli. Physiological measurements revealed higher net photosynthetic rate and chlorophyll content in the winter leaves than in the summer leaves. Proline and soluble sugar content along with antioxidative enzyme (superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione reductase) activities were increased in the winter leaves.  相似文献   

13.
Maritime pine (Pinus pinaster), a drought-avoiding species, contained 2--4-fold lower activities of superoxide dismutase, ascorbate peroxidase, catalase, dehydroascorbate reductase, and glutathione reductase than pendunculate oak (Quercus robur), a drought-tolerant species. The levels of ascorbate, monodehydroascorbate radical reductase activity, and glutathione in pine needles were similar to those in oak leaves. In both species the development of drought stress, characterized by decreasing predawn water potentials, caused gradual reductions in antioxidant protection, increased lipid peroxidation, increased oxidation of ascorbate and glutathione and in pine also significant loss in soluble proteins and carotenoids. These results support the idea that increased drought-tolerance in oak as compared with pine is related to increased biochemical protection at the tissue level. To test the hypothesis that elevated CO(2) ameliorated drought-induced injury, young oak and pine trees acclimated to high CO(2) were subjected to drought stress. Analysis of plots of enzymatic activities and metabolites against predawn water potentials revealed that the drought stress-induced decreases in antioxidant protection and increases in lipid peroxidation were dampened at high CO(2). In pine, protein and pigment degradation were also slowed down. At high CO(2), superoxide dismutase activities increased transiently in drought-stressed trees, but collapsed in pine faster than in oak. These observations suggest that the alleviation of drought-induced injury under elevated CO(2) is related to a higher stability of antioxidative enzymes and an increased responsiveness of SOD to stressful conditions. This ameliorating mechanism existed independently from the effects of elevated CO(2) on plant water relations and is limited within a species-specific metabolic window.  相似文献   

14.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

15.
16.
17.
《Plant science》1987,50(2):105-109
Levels of chloroplast antioxidants and enzymes that scavenge oxygen racidals were followed in the leaves of pea plants (Pisum sativum L. cv. Meteor) grown under glasshouse conditions between April 1984 and May 1985. While little variation in pigment levels or superoxide dismutase activity was detected during this period, plants grown in early summer (May–June) contained appreciably higher levels of ascorbate, ascorbate peroxidase and glutathione reductase than plants grown in winter (Dec–Jan.). The role of light intensity in regulating levels of chloroplast antioxidants was examined further using pea plants grown in a constant environment chamber under 100 or 400 μmol m−2 s −1 photon flux density. Chloroplasts isolated from plants grown at the higher light intensity contained significantly higher levels of ascorbate, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase. These data suggest that light intensity may have an important influence on the level and activity of chloroplast antioxidants and oxygen radical scavenger enzymes.  相似文献   

18.
19.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号