首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

2.
One model for the timing of cytokinesis is based on findings that p34(cdc2) can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), and this inhibition is proposed to delay cytokinesis until p34(cdc2) activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373-1386). Among these kinases and substrates is p34(cdc2) and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34(cdc2) influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [(32)P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.  相似文献   

3.
The mitotic apparatus plays a pivotal role in dividing cells to ensure each daughter cell receives a full set of chromosomes and complement of cytoplasm during mitosis. A human homologue of the Drosophila warts tumor suppressor, h-warts/LATS1, is an evolutionarily conserved serine/threonine kinase and a dynamic component of the mitotic apparatus. We have identified an interaction of h-warts/LATS1 with zyxin, a regulator of actin filament assembly. Zyxin is a component of focal adhesion, however, during mitosis a fraction of cytoplasmic-dispersed zyxin becomes associated with h-warts/LATS1 on the mitotic apparatus. We found that zyxin is phosphorylated specifically during mitosis, most likely by Cdc2 kinase, and that the phosphorylation regulates association with h-warts/LATS1. Furthermore, microinjection of truncated h-warts/LATS1 protein, including the zyxin-binding portion, interfered with localization of zyxin to mitotic apparatus, and the duration of mitosis of these injected cells was significantly longer than that of control cells. These findings suggest that h-warts/LATS1 and zyxin play a crucial role in controlling mitosis progression by forming a regulatory complex on mitotic apparatus.  相似文献   

4.
5.
Summary Membrane proteins of human erythrocytes can be phosphorylated not only by membrane casein kinase (MS) but also by cytosolic casein kinases CS and CTS, resembling casein kinase I and II, respectively.Casein kinase CS, like membrane casein kinase MS, preferentially phosphorylates membrane proteins such as band 2 (spectrin, -subunit) and band 3, which are the major phosphate-acceptor proteins in the endogenous phosphorylation of isolated ghosts in the presence of [-32P]ATP.By contrast, cytosolic casein kinase CTS phosphorylates, in addition to band 2, some membrane proteins, whose endogenous phosphorylation in isolated ghosts under the same conditions is negligible, if any.The CS- and CTS-catalyzed phosphorylations exhibit different response to increasing NaCl (or KCI) concentrations up to physiological levels (140 mM KCI, 20 mM NaCI); i.e. CS-and MS-catalyzed phosphorylations are strongly inhibited by 75–150 mM KCI (or NaCl), while CTS-catalyzed phosphorylation is practically unaffected.In the absence of added NaCl, CS- and MS-catalyzed phosphorylations are markedly inhibited by 1.5-3 mM 2,3-bisphosphoglycerate, whereas CTS-catalyzed phosphorylation appears to be practically unaffected.Finally, CS- and MS-catalyzed phosphorylations are slightly inhibited also by 1 mM spermine, while CTS-catalyzed phosphorylation is enhanced by this polycation concentration.  相似文献   

6.
Regulation of cytoskeletal dynamics is essential to neuronal plasticity during development and adulthood. Dysregulation of these mechanisms may contribute to neuropsychiatric and neurodegenerative diseases. The neuronal protein kinase, cyclin-dependent kinase 5 (Cdk5), is involved in multiple aspects of neuronal function, including regulation of cytoskeleton. A neuroproteomic search identified the tubulin-binding protein, stathmin, as a novel Cdk5 substrate. Stathmin was phosphorylated by Cdk5 in vitro at Ser25 and Ser38, previously identified as mitogen-activated protein kinase (MAPK) and p38 MAPKdelta sites. Cdk5 predominantly phosphorylated Ser38, while MAPK and p38 MAPKdelta predominantly phosphorylated Ser25. Stathmin was phosphorylated at both sites in mouse brain, with higher levels in cortex and striatum. Cdk5 knockout mice exhibited decreased phospho-Ser38 levels. During development, phospho-Ser25 and -Ser38 levels peaked at post-natal day 7, followed by reduction in total stathmin. Inhibition of protein phosphatases in striatal slices caused an increase in phospho-Ser25 and a decrease in total stathmin. Interestingly, the prefrontal cortex of schizophrenic patients had increased phospho-Ser25 levels. In contrast, total and phospho-Ser25 stoichiometries were decreased in the hippocampus of Alzheimer's patients. Thus, microtubule regulatory mechanisms involving the phosphorylation of stathmin may contribute to developmental synaptic pruning and structural plasticity, and may be involved in neuropsychiatric and neurodegenerative disorders.  相似文献   

7.
The nitroreductase family comprises a group of FMN- or FAD-dependent and NAD(P)H-dependent enzymes able to metabolize nitrosubstituted compounds. The nitroreductases are found within bacterial and some eukaryotic species. In eukaryotes, there is little information concerning the phylogenetic position and biochemical functions of nitroreductases. The yeast Saccharomyces cerevisiae has two nitroreductase proteins: Frm2p and Hbn1p. While Frm2p acts in lipid signaling pathway, the function of Hbn1p is unknown. In order to elucidate the function of Frm2p/Hbn1p and the presence of homologous sequences in other prokaryotic and eukaryotic species, we performed an in-depth phylogenetic analysis of these proteins. The results showed that bacterial cells have Frm2p/Hbn1p-like sequences (termed NrlAp) forming a distinct clade within the fungal Frm2p/Hbn1p family. Hydrophobic cluster analysis and three-dimensional protein modeling allowed us to compare conserved regions among NrlAp and Frm2/Hbn1p proteins. In addition, the possible functions of bacterial NrlAp and fungal Frm2p/Hbn1p are discussed.  相似文献   

8.
Here we identified the human serine/threonine kinase HIPK2 as a novel member of the DYRK kinase subfamily. Alignment of several DYRK family proteins including the kinases minibrain, MJAK, PKY, the Dictyostelium kinase YakA and Saccharomyces YAK1 allowed the identification of several evolutionary conserved DYRK consensus motifs within the kinase domain. A lysine residue conserved between all DYRK kinase family members was found to be essential for the kinase function of HIPK2. Human HIPK2 was mapped to chromosome 7q32-q34 and murine HIPK2 to chromosome 6B, the homologue to human chromosome 7.  相似文献   

9.
Summary Using probes obtained by PCR amplification, we have isolated two cognate rice cDNAs (cdc2Os-1 andcdc2Os-2) encoding structural homologues of thecdc2 +/CDC28(cdc2) protein kinase from a cDNA library prepared from cultured rice cells. Comparison of the deduced amino acid sequences of cdc2Os-1 and cdc2Os-2 showed that they are 83 % identical. They are 62 % identical toCDC28 ofSaccharomyces cerevisiae and much more similar to the yeast and mammalian p34cdc2 kinases than to riceR2, acdc2-related kinase isolated previously by screening the same rice cDNA library with a different oligonucleotide probe. Southern blot analysis indicated that the three rice clones (cdc2Os-1,cdc2Os-2 andR2) are derived from distinct genes and are each found in a single copy per rice haploid genome. RNA blot analysis revealed that these genes are expressed in proliferating rice cells and in young rice seedlings.cdc2Os-1 could complement a temperature-sensitive yeast mutant ofcdc28. However, despite the similarity in structure, bothcdc2Os-2 andR2 were unable to complement the same mutant. Thus, the present results demonstrate the presence of structurally related, but functionally distinct cognates of thecdc2 cell cycle kinase in rice.The nucleotide sequence data in this paper have been deposited in the EMBL database under accession number X60374 (cdc2Os-1) and X60375 (cdc2Os-2)  相似文献   

10.
Chemotherapy resistance is a major obstacle to achieving durable progression-free-survival in breast cancer patients. Identifying resistance mechanisms is crucial to the development of effective breast cancer therapies. Immediate early genes (IEGs) function in the initial cellular reprogramming response to alterations in the extracellular environment and IEGs have been implicated in cancer cell development and progression. The purpose of this study was to investigate the influence of kinase inhibitors on IEG expression in breast cancer cells. The results demonstrated that Flavopiridol (FP), a CDK9 inhibitor, effectively reduced gene expression. FP treatment, however, consistently produced a delayed induction of JUNB gene expression in multiple breast cancer cell lines. Similar results were obtained with Sorafenib, a multi-kinase inhibitor and U0126, a MEK1 inhibitor. Functional studies revealed that JUNB plays a pro-survival role in kinase inhibitor treated breast cancer cells. These results demonstrate a unique induction of JUNB in response to kinase inhibitor therapies that may be among the earliest events in the progression to treatment resistance.  相似文献   

11.
12.
The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein.  相似文献   

13.
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in the biosynthesis of serotonin. TPH was once thought to be a single-gene product but it is now known to exist in two isoforms. TPH1 is found in the periphery and pineal gland whereas TPH2 is expressed specifically in the CNS. Both TPH isoforms are known to be regulated by protein kinase-dependent phosphorylation and the sites of modification of TPH1 by protein kinase A have been identified. While TPH2 is activated by calcium, calmodulin-dependent protein kinase II (CaMKII), the sites at which this isoform is modified are not known. Treatment of wild-type TPH2 with CaMKII followed by mass spectrometry analysis revealed that the enzyme was activated and phosphorylated at a single site, serine-19. Mutagenesis of serine-19 to alanine did not alter the catalytic function of TPH2 but this mutant enzyme was neither activated nor phosphorylated by CaMKII. A phosphopeptide bracketing phosphoserine-19 in TPH2 was used as an antigen to generate polyclonal antibodies against phosphoserine-19. The antibodies are highly specific for phosphoserine-19 in TPH2. The antibodies do not react with wild-type TPH2 or TPH1 and they do not recognize phophoserine-58 or phosphoserine-260 in TPH1. These results establish that activation of TPH2 by CaMKII is mediated by phosphorylation of serine-19 within the regulatory domain of the enzyme. Production of a specific antibody against the CaMKII phosphorylation site in TPH2 represents a valuable tool to advance the study of the mechanisms regulating the function of this important enzyme.  相似文献   

14.
15.
16.
This study is part of an ongoing attempt to identify and characterize proteins associated with the human decidual tissue. A novel decidual-associated glycoprotein with an apparent molecular weight of 71 kD named hDP71 (human decidual-protein 71), has been identified and purified by immunoaffinity technique using monoclonal antibodies. The monoclonal antibodies recognizing the hDP71 were raised against a partly purified preparation of decidual associated proteins, which was obtained by immunoabsorption of serum proteins from crude decidual extract. Although the hDP71 was copurified with another decidual-associated glycoprotein, the previously described hDP200 (Halperin et al., 1989), evidence is presented showing that the monoclonal antibodies described above are specific for hDP71.  相似文献   

17.
Rad51 is a key element of recombinational DNA repair and its activity is regulated by phosphorylation of the tyrosine residue at position 315 by cAbl kinase. This phosphorylation could be involved in the resistance of cancer cells to chemotherapy. We have investigated the role of this residue by comparing the three-dimensional structures of human Rad51 and its prokaryotic homologue, Escherichia coli RecA. The residue appeared to be on the edge of the subunit-subunit interacting site. The fluorescence intensity of the tryptophan residue inserted at position 315 of human Rad51 in the place of tyrosine was decreased by adding 3 M urea, although the protein was not unfolded as there was no large change in the fluorescence peak position or circular dichroism signal. This change in fluorescence occurred at a lower urea concentration when the protein was diluted, which favours dissociation. These results indicate that the change is related to the dissociation of Rad51 polymer and that residue 315 is close to the subunit-subunit interacting site. ATP and ADP, which affect the filament structure, caused a blue shift in the fluorescence peak. These nucleotides probably altered the subunit-subunit contacts and may thus affect the filament structure. Phosphorylation of this residue could therefore affect the formation and structure of the Rad51 filament. Correct prediction of subunit-subunit interface of Rad51 by simple comparison of structures of Rad51 and RecA supports the idea that Rad51 forms the filament in a similar way as does RecA.  相似文献   

18.
The ability of the cytoplasmic, full-length C-terminus of the β2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS–PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the “activated” conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization.  相似文献   

19.
The recombinant catalytic subunit of human protein kinase CK2 bas been mutagenised at the C-terminal region in an attempt to induce this tail to fold. We suppose in fact that this unstructured C-terminus just might be responsible for the high degradability of the human enzyme. On the basis of theoretical calculations we choose to substitute two distal prolines with alanines (PA 382-384). The mutant bas been purified to the electrophoretic homogeneity by means of three chromatographic steps. By circular dichroism Spectroscopy we verified if the double amino acids substitution reflected on the secondary structure of the recombinant subunit. According to our theoretical predictions, we observed that the -helix content of the protein increased when the two distal prolines were substituted by alanines. Moreover the mutant catalytic subunit shows a reduced ability to bind a classical inhibitor such as heparin.  相似文献   

20.
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号