首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological assessment of aquatic resources requires the availability of bioassessment tools that work in all waterbody types and regions of interest. Developing new assessment tools may require several years of data collection and substantial investment of resources, which may not be an option for some aquatic resource managers. Adapting tools developed for different regions or wetland types may be an attractive alternative to developing new indices, provided they work well in the novel setting. In this study, we explore the transferability of two bioassessment indices for application to depressional wetlands in California, which are wetland type of management concern but for which bioassessment tools don’t currently exist. We tested the applicability of a depressional wetland invertebrate index of biotic integrity (IBI) developed in the San Francisco Bay region of northern California for application in the drier regions of southern California (i.e. geographic transferability), and the ability to apply a riverine benthic diatom IBI to benthic diatoms in depressional wetlands (i.e. water body type transferability). We evaluated the accuracy and responsiveness of the existing Indices for use in depressional wetlands and refined reference definitions and recalibrated thresholds relative to stressor gradients to maximize index performance. Performance of the adapted indices was compared to that of an existing habitat assessment tool (the California Rapid Assessment Method; CRAM) that has been developed for statewide application of depressional wetlands. Finally, we demonstrate application of the revised indices for ambient assessment of depressional wetland condition in southern California. Recalibrating both the macroinvertebrate and diatom indices to reference thresholds based on nutrient concentrations resulted in lower coefficient of variation among reference sites, greater differentiation between reference and non-reference and stronger relationship with stressors than when reference thresholds were based on landscape disturbance. Overall, the simple adjustment of the reference definition allowed us to transfer the indices with no structural changes to the metrics. This approach can facilitate future index adaptations that allow practitioners to include waterbody types for which there is no current index into routine biomonitoring programs.  相似文献   

2.
Human intervention and drought conditions in Mediterranean rivers may necessitate the collection of organisms from a different habitat type to that specified by the original bioassessment protocol; it is therefore critical to understand the consequences of adaptive sampling strategies in these lotic systems. In a survey of 31 streams (2nd–4th order) in northern Portugal we collected separate macroinvertebrate samples from running-water and standing-water habitats and fish samples from a delineated reach, inclusive of all habitat types. In addition to collecting habitat data specific to macroinvertebrates and fish we conducted a generalized River Habitat Survey (RHS) and derived scores designed to report habitat quality and habitat degradation. Ecological data were described in terms of taxonomic structure, functional organization and by biotic indices and interpreted in relation to habitat data, comparing samples within and between sites for concordance. Macroinvertebrates from respective habitats differed in their relationship with habitat variable with running-water samples more strongly related to substrate and water quality and standing-water samples more strongly reflecting habitat characteristics at the reach scale. Running- and standing-water samples from the same-site varied widely, indicating that substituting standing-water for running-water samples in macroinvertebrate-based bioassessment carries a high risk of misclassification. However, a consistent bias in index scores suggests that a habitat-adjusted interpretation of biotic indices could be employed to improve measurement precision. Variation in key parameters of the fish community corresponded to changes in water quality and habitat structure and to reach-scale features recorded by the RHS. Trends between macroinvertebrate and fish measurements indicated common patterns for oxygen/flow sensitive taxa and for trophic organization that were related to similar habitat preferences. Whilst macroinvertebrates demonstrated no relationship with derived scores of habitat quality, the fish-based Index of well-being (Iwb) was strongly related to the Habitat Modification Score. Overall these data indicate how different ecological samples can be used to focus on different aspects of habitat quality and are suggestive of strategies for both the collection and interpretation of ecological data that would improve assessment performance. This study emphasizes the need to adapt assessment methods not only to the species pool but also to the differences in the managed and natural habitat characteristics of these types of Mediterranean streams.  相似文献   

3.
Over the past two decades there has been increasing interest in developing indicators to monitor environmental change. Remote sensing techniques have been primarily used to generate information on land use/land cover changes. The US Fish and Wildlife Service has used this technology to monitor wetland trends and recently developed a set of remotely-sensed indicators to characterize and assess trends in the integrity of natural habitat in watersheds. The indices largely focus on the extent of “natural” cover throughout a given watershed, with an emphasis on locations important to fish, wildlife, and water quality. Six indices address natural habitat extent and four deal with human-caused disturbance. A composite index of natural habitat integrity combining the habitat extent and habitat disturbance indices may be formulated to provide an overall numeric value for a watershed or subbasin. These indices facilitate comparison between watersheds (and subbasins) and assesssment of trends useful for environmental monitoring. This paper describes the indices and presents an example of their application for characterizing and assessing conditions of subbasins within Delaware’s Nanticoke River watershed.  相似文献   

4.
Rapid biomonitoring protocols, using biotic indices based on macroinvertebrate diversity to assess river ecosystem health, are widely used globally. Such quick assessment techniques are lauded for the rapid results obtained and the relatively easy protocol used to achieve an answer. However, do such quick assessments of water quality give enough information about ecosystems? Are important details being overlooked? When should a full faunal survey be used in preference? Important research programmes, including environmental impact studies, often misuse biomonitoring techniques, making influential management decisions using superficial, low-level data obtained using biomonitoring tools, inappropriate to address those management objectives. The value of using biomonitoring as a quick tool, versus a more detailed faunal assessment, is considered here. The assessment of teloganodid mayfly fauna occurring in South African rivers provides an example of the value of detailed studies versus superficial family level investigations, showing that a rapid biomonitoring approach should not be used as a shortcut when a more detailed survey is needed. Each situation should be assessed for its own merit in a given set of project circumstances. A checklist of criteria is presented, giving guidance on when rapid biomonitoring alone is valuable and when more detailed assessments would give a more relevant result.  相似文献   

5.
We describe a tolerance classification based on the physicochemical parameters of water and habitat quality indices for native and introduced fish species in northeastern Spain. Although fish are widely used as biological indicators, the tolerance categories currently available for Spanish Mediterranean fish species are uncertain or subjective. We sampled 430 sites covering a wide range of river conditions, allowing us to develop tolerance scores based on a quantitative assessment. We used indirect ordination methods to establish stress gradients between the environmental variables compiled during the monitoring surveys carried out from 2002 to 2008. We then drew up a tolerance classification for the most common species in our dataset using weighted average inference models based on the following gradients: water quality and the state of physical habitat. The results were corroborated by multivariate gradient analysis. The fish scores obtained were applied to an independent dataset and a positive correlation was found between assessment protocols. Our results corroborate the use of fish, including exotic fish species, as biological indicators. Our findings may be used in a regional Index of Biotic Integrity and for the use of fish in bioassessment studies based on scores.  相似文献   

6.
Diatoms and macroinvertebrates are both commonly used for biological assessment of stream condition. As the use of biological assessment techniques increases, resource managers will need to make decisions on which biological tool to use for a particular study. In a study of the Kiewa River, Victoria, Australia we assessed these two components of the biota—macroinvertebrates and diatoms—using indices and pattern analysis, and comparing them with an a priori landscape classification. We also assessed the relationship exhibited between the biological results and environmental variables which are usually significant in stream ecosystems. To make the data comparable we used categorical abundances for both data sets. The pattern analyses showed complementary results, with diatoms more closely related to water quality variables, whereas macroinvertebrates were primarily related to catchment and habitat features. An analysis of a combined data set (diatoms plus macroinvertebrates) showed no extra information was gained. Using categorisation to create consistency between data sets was shown to reduce the information and affect results from the diatom analyses. The results suggested that the locally derived bioassessment models and indices provided a more accurate assessment of the sites than the overseas-derived diatom index. The outcomes are complicated by issues of data weighting, whereby a presence/absence diatom index may have performed better than abundance-weighted indices due to strong dominance of one or two species at a site. Future comparisons will benefit from an increase in the knowledge of regional diatom taxonomy and autecology.  相似文献   

7.
1. Semi‐aquatic birds may be sensitive to altered water quality. While avian species are not used in the bioassessment of streams, they may complement the more common use of benthic macroinvertebrates and fish. We estimated the extent to which water quality can predict attributes of the populations of one common semi‐aquatic bird, the American dipper (Cinclus mexicanus). 2. First, we estimated dipper presence/absence in relation to water quality as measured by a multimetric assessment index and individual bioassessment metrics. Second, we estimated dipper territory area and reproductive success in response to variation in water quality. We studied the diet, territory area and fecundity of dippers and sampled benthic macroinvertebrates, water chemistry and physical variables at 32 sites with and 17 sites without nesting dippers. 3. Dipper presence was only weakly related to chemical, physical and commonly recorded bioassessment metrics such as per cent Ephemeroptera, Plecoptera and Trichoptera (%EPT). Dippers were strongly related to the abundance of their common prey, Drunella and Heptageniidae, which are only a small component of the commonly recorded bioassessment metrics. The variances in territory area and reproductive success were weakly predicted by water quality variables. 4. Dipper presence reflected disturbance as measured by their common prey, showing that lower abundance of these stream invertebrates affected this semi‐aquatic bird. We suggest dipper presence/absence might be used in multimetric indices of biotic integrity for the bioassessment of streams.  相似文献   

8.
Testing simple indices of habitat proximity   总被引:1,自引:0,他引:1  
Simple measures of habitat proximity made primarily on the basis of land cover are widely used in the ecological literature to infer habitat connectivity, or the potential for animal movement among resource patches. However, such indices rarely have been tested against observations of animal movement or against more detailed biological models. We developed a priori expectations as to the types of study systems and organisms for which various habitat proximity indices would be best suited. We then used data from three study systems and four species to test which, if any, of the indices were good predictors of population-level responses. Our a priori expectations about index performance were not upheld. The indices that consider both habitat area and distance from the focal patch were highly correlated with each other, suggesting that they do index similar quantities. However, none of the indices performed well in predicting population response variables. The results suggest that the pattern of habitat cover alone may be insufficient to predict the process of animal movement.  相似文献   

9.
Sample Variability Influences on the Precision of Predictive Bioassessment   总被引:1,自引:0,他引:1  
The rapid bioassessment technique we investigate (AUSRIVAS) requires a nationally standardized sampling protocol that uses a single collection of macroinvertebrates (without replication) taken from 10 m of specific habitats (e.g. stream edge and/or riffle) and sub-samples of 200 animals. The macroinvertebrate data are run through predictive models that provide an assessment of biological condition based on a comparison of the animals found in the collection (the observed) and those expected to be there given the site-specific characteristics of the stream (the O/E taxa score). The important questions are related to the conclusions regarding river condition that can be drawn from the biological assessment. Rapid bioassessment studies are generally of two types: those for assessment of individual sites and those where many sites are selected to collectively assess the potential impacts of some human activity such as forestry or agriculture. We wanted to identify the effects of sample variability on the outputs of this predictive bioassessment technique. We found that a single collection of benthic macroinvertebrates was sufficient for bioassessment when taken from a site that had a large area of nearly uniform substrate and was in good condition. Also, collections taken from a larger and smaller area of substrate (1.75, 3.5 or 7 m2) gave the same bioassessment. In other sites, not in such good condition, the variability in bioassessment from different collections could result in different interpretations of biological condition. For all sites, regardless of condition, much of the variation in bioassessment was derived from sub-sampling the macroinvertebrates. We develop a statistical sub-sampling and solver algorithm that provides a measure of variability and a statistically valid probability of impairment for a single site, without the need to actually collect the hundreds of replicated collections needed for this study. We found that assessment at impaired sites, where only 1 collection and 1 sub-sample are taken (a common situation in rapid assessment), the 95% confidence level for O/E taxa scores is estimated to be as much as ±0.22. At sites in reference condition, the 95% confidence interval may be much narrower (~±0.1 O/E units). Therefore, assessments of sites at, or near, reference condition will be more precise than for impaired sites. Power analysis revealed that where single sites are being assessed we recommend a sample collected from 3.5 m2 of habitat, but replicate collections should be taken at a site (rather than one only) and we recommend replicate sub-samples of each collection (total of six sub-samples from a site). However, this would remove a ‘rapid’ component of the bioassessment. We recommend the addition of sub-sampling and solver algorithms to the predictive models such as AUSRIVAS to provide a statistical measure of probability of impairment. An adaptive sub-sampling regime could then be used to optimize sampling effort. For example, a single sub-sample may be sufficient for screening or the agency could use the sub-sample and solver algorithms to sub-sample the parent sample for a more precise estimate of the biological condition. Replication should be maximized at the spatial scale required for reporting: site, or regional. But as a general rule, catchment or land-use scale studies should maximize replicate sites, and site-scale assessments should maximize replication within sites.  相似文献   

10.
1. When using benthic macroinvertebrate communities for bioassessment, temporal variation may influence judgement as to whether or not a site is degraded.
2. In a survey of sixteen reference and sixteen test sites in the upper Thames River catchment area (UTRCA) in south-western Ontario, Canada, consistent differences between summer and winter samples were found for taxon richness (increase; P = 0.06) and the Family Biotic Index (decrease; P = 0.11). A bioassessment based on these results would indicate better water quality in the same streams in winter relative to summer. No consistent pattern of seasonal difference was detected for Simpson's Diversity and Equitability, or percentage Dominant Taxon.
3. The Reference Condition Approach to bioassessment uses predictive modelling to explain variation in reference communities with the environmental conditions at these sites as predictors. The community at a test site is compared with that predicted by the model. Several predictive models were constructed using simple geographic and habitat characteristics (i.e. catchment area, distance to source, stream width, substrate and habitat diversity) as predictors. By including season of sampling in the models, we increased their predictive power and the ability of the bioassessment to detect degradation. The best results were achieved when separate predictive models were built for each sampling season.  相似文献   

11.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   

12.
Abstract Fish provide powerful tools for assessing aquatic environments. Three attributes are especially significant: the sensitivity of fish to most forms of human disturbance, their usefulness at all levels of biological organization and the favourable benefit-to-cost ratio offish assessment programmes. Fish can be used as indicators over wide temporal and spatial ranges. Because they cover all trophic levels of consumer ecology, fish can effectively integrate the whole range of ecological processes in waterways. Fish have been used in many different roles for assessing river health and monitoring responses to remedial management. Three of these applications appear to have particular value for management of Australian rivers: (i) automated systems monitoring fish ventilation can provide sensitive, broad-spectrum and continuous sensing of water quality to protect receiving waters or water-supply intakes; (ii) programmes collecting routine data on commercial or recreational fisheries can be designed and analysed so as to isolate confounding effects due to fishery-specific factors and, hence, used to detect and monitor environmental change on large scales; (iii) the Index of Biotic Integrity (IBI) can be modified to suit Australian conditions and fish communities to meet the important need for a predictive model of aquatic environmental quality. The IBI is a quantitative biological tool with a strong ecological foundation that integrates attributes from several levels of ecosystem organization. Examples of the use of IBI elsewhere suggest its robustness, flexibility and sensitivity can cope effectively with the low diversity of the Australian fish fauna and the dominance of ecological generalists. A provisional structure is suggested for a test of the IBI in four riverine regions of New South Wales.  相似文献   

13.
北京市白河和潮河流域生态健康评价   总被引:5,自引:0,他引:5  
徐菲  王永刚  张楠  王旭  范清 《生态学报》2017,37(3):932-942
选取北京市重要的饮用水源密云水库上游白河和潮河流域,结合北京山区流域生态现状,构建了涵盖水域生境结构、水生生物、生态压力和陆域生态格局与功能、生态压力5大类13项指标的评价指标体系,开展了流域生态健康评价。结果表明白河和潮河流域的健康状态整体处于良好等级,但水生生物和陆域生态格局状况相对较差。14个子流域的健康状况差异并不显著,琉璃河、白河下段、汤河上游的健康状况相对较好,潮河中下段和小汤河的健康状况相对较差。流域内不合理的畜禽养殖、岸边带种植及民俗旅游是导致流域生态健康退化的主要原因,建议加强污染负荷排放的控制和监管涉水活动对水生生境的干扰以改善流域健康状况,并重点关注可指示水生态系统早期退化的生物指数,以实现可持续性和适应性的流域管理,保障密云水库的水生态安全。  相似文献   

14.
It is unclear whether differentiating live and dead diatoms would enhance the accuracy and precision of diatom-based stream bioassessment. We collected benthic diatom samples from 25 stream sites in the Northern Oregon Coast ecoregion. We counted live diatoms (cells with visible chloroplasts) and then compared the counts with those generated using the conventional method (clean counts). Non-metric multidimensional scaling (NMDS) showed that the diatom assemblages generated from the two counts were overall similar. The relationships between the two diatom assemblages (summarized as NMDS ordination axes) and the environmental variables were also similar. Both assemblages correlated well with in-stream physical habitat conditions (e.g., channel dimensions, substrate types, and canopy cover). The conventional diatom method provides taxonomic confidence while the live diatom count offers ecological reliability. Both methods can be used in bioassessment based on specific assessment objectives. Handling editor: J. Saros  相似文献   

15.
Due to the difficulty of identifying many taxa of freshwater invertebrates to species, many researchers have assessed the utility of surrogates for species-level identifications (e.g. higher taxa) in bioassessment programs. Here, we examined the efficiency of two different approaches to species surrogacy, one using coarser taxonomic resolution and a second approach based on random aggregation (“Best practicable aggregation of species”, BestAgg), in portraying patterns of stream macroinvertebrates in Central China. The main objectives were: (1) to compare the discriminatory power of biodiversity indices and assemblage structure for different levels of human disturbances based on different taxonomic resolution and on BestAgg; (2) to identify the congruence of assemblage-environment and biodiversity-indices-environment relationships for datasets at the species level versus those at surrogate levels. We found that genus-level and BestAgg datasets accurately reproduced the pattern of species-level communities, whereas family- and order-level datasets did not. Specifically, both genus-level and BestAgg approaches performed almost as well as species-level data in distinguishing sites subjected to different disturbance levels. Most of the environmental variables that were important for species-level assemblages, also emerged as significant when analyzing genera and BestAgg surrogates, as shown by both analyses of indices and assemblage composition according to distance-based ordination models. Our results suggest that genus-level taxonomy, which resulted in the least loss of ecological information relative to species-level identification, is sufficient in studies of community ecology and bioassessment of stream macroinvertebrates in Central China. In addition, the BestAgg approach, which required identification of fewer taxa than genus-level analysis, has a similar ability to depict multivariate patterns of macroinvertebrate assemblages and differentiate different disturbance levels. Applying our results could enhance speed and cost-effectiveness of freshwater biomonitoring and bioassessment programs; however, independent determination of best taxonomic level and BestAgg will be required whenever a new geographic area or habitat type is assessed.  相似文献   

16.
Functional characteristics of species are of great importance for understanding their roles in ecosystems and can be used to detect long-term chances in the environment. We evaluated temporal changes (1983–1985 and 2017–2019) in taxonomic and functional indices of the fish fauna in shallow areas of a tropical bay heavily impacted by anthropogenic activities in recent decades. The hypothesis that functional indices change over time as a result of environmental degradation was tested. Our results showed a significant decrease in species richness and abundance over time, and in functional richness, while others functional diversity indices (divergency, evenness, and originality) remained stable. Thirteen functional groups were detected, some of which contained only one species, raising concerns about the loss of ecosystem functions due to ongoing changes. We also observed an increase in beta diversity over time, which may be the result of a decrease in local richness without leading to regional extinctions. Turnover was the most important process in structuring the fish fauna at the evaluated time scale. The relative stability of the functional structure and the higher levels of turnover seem to be related to the dominance of functional groups, within which species replace each other according to their responses to environmental filters that select for specific functional traits. Incorporating functional diversity indices and beta diversity variations in the fish community helped to enhance the existing information about this coastal system by offering improved estimates of biological diversity through diverse approaches. The predominance of turnover identified in the preset study suggests a dynamic and fluctuating species composition within the habitat. In this sense, habitat preservation should prioritize the protection of diverse habitats to accommodate a broad spectrum of species.  相似文献   

17.
The bioassessment and monitoring of the ecological status of rivers using macrophytes has gained new momentum since macrophytes were recognised as biological quality elements for the implementation of the European Water Framework Directive (WFD; EU/2000/60).Our objectives were to test the suitability of two predictive modelling approaches to macrophyte communities as a tool for water quality assessment, and to compare their performance with other more common approaches—the use of macrophytes as indicators of the trophic status of rivers and multimetric indices. We used floristic and environmental data that were collected in the spring of 2004 and 2005 from around 400 sites on rivers across mainland Portugal, western Iberia.We build two predictive models: MACPACS (MACrophyte Prediction And Classification System) and MAC (Macrophyte Assessment and Classification) based on RIVPACS and the BEAST methods, respectively. Whereas MACPACS is derived from taxa occurrence data, MAC uses a quantitative measure of taxa abundance. Both models showed good performance in predicting reference sites to the correct group and low rate of misclassification errors. However, they performed differently. MAC depicts a reliable response to the overall human-mediated degradation of fluvial systems, as does the multimetric index (RVI, Riparian Vegetation Index), but MACPACS presented only a poor correlation with the Global Human Disturbance Index and with the nutrients input. The incorporation of abundance data in vegetation predictive models appears to be particularly important to the detection of high levels of degradation. The values for correlations with physical–chemical pressure variables were lower than expected for MTR (Mean Trophic Rank) due to an insufficient number of scoring species found in Portuguese fluvial systems. Our results suggest that the most effective methods for bioassessment in Mediterranean-type rivers are either the RVI or the MAC predictive model.  相似文献   

18.
《Ecological Indicators》2008,8(5):743-753
The selection of adequate methodologies for the assessment of different biological quality elements is urgently needed for the application of the water framework directive (WFD 2000/60/EEC). In the case of macroalgae in coastal waters of the North East Atlantic, two methodologies have been proposed: the reduced species list (RSL) index and the quality of rocky bottoms (CFR) index. Both methods use multimetric approaches to evaluate the quality of macroalgae assemblages, which are based on community characteristics (species/populations richness, cover, percentage of opportunistic species, ecological state groups ratio, etc.). In this paper the results of applying both indices on three different types of pollution gradients in the North coast of Spain (bay of Biscay) are presented, in order to test their usefulness and intercalibration possibilities. In general terms, the CFR index responded more accurately than the RSL index to the pollution gradients under study. With respect to the indicators used in the current evaluation, richness, opportunistic species and cover seemed to be the most accurate for quality assessment of macroalgal communities. While the first two indicators are taken into account in both indices, the latter (cover) is only considered in the CFR index, even though the abundance of macroalgae is one of the aspects to be included in the evaluation of this biological element, according to the WFD.  相似文献   

19.
Benthic macroinvertebrates are commonly used in rapid bioassessment programs of rivers and streams with a few standard measures used to assess condition. These include AUSRIVAS predictive models, indices such as SIGNAL and EPT and a simple measure of taxa richness, number of families. Data in these programs are usually identified to family level. Until recently, there has been no assessment of the performance of these standard measures to specific environmental gradients. In addition, the level of identification remains contentious, with family level considered adequate in broadscale assessments whereas finer levels of resolution may be preferable in other situations. We tested whether finer levels of taxonomic resolution (of all taxa and just EPTs) improved detection of two environmental gradients – salinity and habitat simplification (through increased sandiness) – and also whether alternative indices enhanced detection of these gradients. Multivariate techniques demonstrated that different invertebrate communities were readily apparent for the salinity gradient (measured as electrical conductivity at the time of sampling) but less so for the habitat simplification gradient (measured as %sand in the riffle). By contrast, the standard measures (listed above) had low r 2 values with EC (<0.34) for the salinity dataset but higher r 2 values with %sand (up to 0.72) in the habitat simplification dataset. Species level data and species EPT data did not account for much more variation in the data than their family level equivalents. Reformulating the EPT data from numbers of taxa to % of the community improved these relationships in some cases. Alternative indices based on Crustacea and Mollusca showed strong relationships to the salinity gradient but not to habitat simplification. These findings are discussed regarding the application of the RBA data to specific disturbances and the need to develop more diagnostic indices.  相似文献   

20.
ABSTRACT Although brood survival has a pronounced effect on population growth in mallards (Anas platyrhynchos), knowledge of brood ecology is more limited than for other vital rates. During 1993–1997 we collected wetland selection data from 210 radiomarked mallard broods on 15 study areas located throughout the Canadian Prairie-Parklands. We used information-theoretic approaches to select the best-approximating model of habitat selection in relation to wetland characteristics. Wetland permanence, cover type, width of flooded emergent vegetation, and interactions between these variables and date, moisture level, and dominant species of emergent vegetation were all important predictors of wetland selection. Mallard broods selected deeper wetlands, especially later in the brood-rearing season. Mallard broods also selected wetlands with large central expanses of open water and wide peripheral zones of flooded emergent cover. These habitat characteristics can most easily be met in landscapes that already contain an abundance and diversity of natural wetland habitats. Where such wetlands are unavailable, restoration or management of deeper wetlands may be necessary to meet the habitat requirements of mallard ducklings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号