首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-scale temporal variation in abundances of fauna in marine soft sediments has long been recognised. Many studies on rocky intertidal shores have, however, focused on larger fauna in single habitats and have primarily examined relatively long time-scales. The implications of small-scale variability are frequently not adequately addressed in the studies of changes in fauna over longer time-scales. Without knowledge of the magnitude of variation at smaller scales, comparisons across longer time-scales may be confounded. In this study, the temporal variability of a number of co-existing species of microgastropods in patches of two different intertidal habitats (coralline turf and sediment) in Botany Bay, New South Wales, Australia, was measured using a nested, hierarchical sampling design incorporating temporal scales of weeks, 1 and 3 months. In addition to habitats, there were also spatial scales of metres between plots and 100s of metres between the locations. There was generally a lack of consistency in the trends of variance for the three temporal scales at the smallest spatial scale of plots. In addition, the different species, including those that were closely related, showed different patterns of variation, depending on the habitat and site. These data show the importance of incorporating adequate scales of sampling in different habitats when analysing the distribution and abundance of microbenthos in intertidal habitats.  相似文献   

2.
Sandy coastlines are dynamic environments with potential for biodiverse habitats, such as green beaches. Green beach vegetation can develop on nutrient-poor beaches landward from embryo dunes. It is characterised by low-dynamic coastal wetland habitat such as salt marshes and dune slacks. It has been hypothesised that the establishment of green beach vegetation is facilitated by the shelter provided by embryo dunes, however evidence is lacking.We explored the importance of geomorphology and soil conditions on the species richness and turnover of green beach vegetation over a time period of 10 years. We recorded 107 plots along 11 transects over a gradient from beach to dune on the island of Schiermonnikoog, the Netherlands. We characterised transect geomorphology at transect level and soil conditions and vegetation at plot level in 2006 and 2016.We found that the green beach vegetation was highly dynamic, total plant cover increased by 62% within 10 years. In 2006 beach width was an important factor in explaining species richness, with the highest number of species occurring on narrow beaches with a large volume of embryo dunes. In 2016, species richness was positively associated with the build-up of organic matter. Overall species richness declined relative to 2006 and was accompanied by an increase in elevation due to sand burial and the expansion of embryo dune volume.Our data suggests that geomorphology influenced the vegetation indirectly by affecting sand burial rate. Plant species richness declined less at sheltered conditions where sand burial was limited, allowing the build-up of organic matter. This indicates a time-dependent relationship between the development of embryo dunes and plant species richness: embryo dunes can be a source of shelter, thus increasing species richness, but can compete for space over time, lowering species richness again. Our results are relevant for engineering and management of biodiverse sandy shores.  相似文献   

3.
The spatial distributions of species of tree 10 cm gbh were examined in two 4 ha plots and related to the local variation in topography and soil chemistry. The plots were similar in their species composition, particularly in terms of the densities of small trees, and they showed very similar edaphic characteristics. Size class distributions varied little within and between plots. Ordination of 0.25 ha subplots highlighted parallel gradients in the vegetation of both plots when the densities of trees 10 cm gbh were considered. Focusing on understorey trees in the 10-<50 cm gbh class at the 0.04 ha subplot scale showed a similar vegetation gradient in both plots closely associated with change from lower slope to ridge. No relationship with soil chemistry was found. On the ridges a special group of understorey species formed clumps and these species contributed importantly to the ordinations. Borneo has a regional history of occasionally severe droughts. It is suggested here that the observed patterns in the understorey are due to differential responses to low soil water supply, the ridges probably tending to dryness more than the lower slopes. Within the large and diverse family Euphorbiaceae, which dominates the understorey at Danum, there may be ecophysiological groupings of species. The long-term effects of disturbance interacting with local edaphic factors on forest structure and composition are discussed.  相似文献   

4.
Plant habitat associations are well documented in Bornean lowland tropical forests, but few studies contrast the prevalence of associations across sites. We examined habitat associations and community composition of Dipterocarpaceae trees in two contrasting Bornean lowland mixed dipterocarp forests separated by approximately 100 km: Andulau (uniform topography, lower altitudinal range, sandy soils) and Belalong (highly dissected topography, higher altitudinal range, clay‐rich soils). Dipterocarpaceae trees ≥ 1 cm diameter at breast height (dbh) were censused in 20‐m wide belt transects established along topographic gradients at each site. Dipterocarp density, evenness, species richness, and diversity were significantly higher at Andulau than Belalong. Significant site associations (with either Andulau or Belalong) were detected for 19 (52%) of the 37 dipterocarp species tested. Dipterocarpaceae community composition at Belalong correlated with soil nutrient concentrations as well as measures of vegetation and topographic structure, but community composition at Andulau correlated with fewer habitat variables. Within each site, dipterocarp density, species richness, and diversity were consistently higher on ridges than in slopes and valleys. Significant within‐site associations to topographic habitats were less common at Andulau (10% of species tested) than at Belalong (15%). We conclude that edaphic and other environmental factors influence dipterocarp community composition at a local scale, and are more important drivers of community structure in the more variable environment at Belalong. Species richness and diversity of dipterocarps on small plots, however, were higher at Andulau, suggesting that factors other than environmental heterogeneity contribute to contrasts in dipterocarp tree species richness at small scales.  相似文献   

5.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

6.
Question: What is the relative importance of national‐, regional‐ and within‐beach‐scale influences on vegetation composition and floristic affinities of New Zealand gravel beaches? Location: Coastal New Zealand. Methods: We sampled vegetation composition at 61 gravel beaches, quantifying site factors and adjacent landscape characteristics. Site, climate and geographic relationships between gravel beaches and related ecosystems were inferred using GIS data layers. To simultaneously investigate influences at different spatial scales, we used ordination and variation partitioning to examine relationships between composition and environment, and hierarchical models to understand floristic affinities with related ecosystems. Results: At a national scale, compositional variation among beaches reflects mean annual temperature and spring vapour pressure deficit; within regions, proximity of native woody vegetation and coastal turfs are important; within‐beach variation is related to substrate stability and particle size distribution. The gravel beach flora is 50% exotic, reflecting the highly modified nearby landscapes; 30% of species are characteristic of coastal sands, 20% of braided riverbeds and 8% of coastal turfs. Affinities with coastal sand communities are unrelated to microsite sandiness or area of sand dunes within 50 km. Affinities with braided riverbeds are related to the bed area of those rivers draining within 200 km and proportion of gravel in the substrate. Affinities with coastal turfs are related to proximity to the nearest turf and the proportion of humus in the substrate. Conclusions: Examining multiple scales of influence in a landscape context is essential to understand composition of naturally discrete ecosystems that span wide geographic ranges and to underpin their conservation management.  相似文献   

7.
Abstract. Earlier studies have described how moist, on-shore winds cause meso-scale vegetation patterns on arid mountains near the sea. However, all protruding objects such as trees, micro-relief, and hill slopes influence the distribution of sea-mist. The influence of the tree-canopy, aspect, and distance to the sea on the field-layer vegetation in montane savanna was investigated on 16 hills in the Red Sea Hills, at 34 - 38 km from the sea. At 32 sites, total field-layer cover, species cover, and species number were estimated in a sub-canopy plot and in a nearby open plot on seaward and leeward slopes. Cover and species number in the understorey are significantly higher than in the open. The difference is highest on seaward slopes. Detrended correspondence analysis reveals short species-axes of ca. 2 SD-units. Differences between plots are mainly in species cover. This fits a principal components ordination model. PCA and its constrained version RDA give concordant results. The explanatory variables, Tree-cover and Relative Radiation Index (aspect), have similar indirect influences on plants, and are significantly correlated with axis 1, which is interpreted as a moisture and temperature gradient. The moist seaward plots show an independent trend in species composition along axis 2, which correlates with distance to the sea. On a presence basis the variables, all representing different spatial separation, correlate on the first axis. Presumably, the species composition, at all spatial scales, is directly or indirectly related to the variation in temperature and moisture.  相似文献   

8.
Species richness and composition of bird assemblages found in the understory of undisturbed Neotropical forests vary at local and regional scales but the extent of that variation has not been well documented. Yet, such variation can be important for understanding patterns of diversity and for conservation. Here, we use capture data from two ca 100-ha study plots (sampled from March 2001 through March 2005) to compare understory assemblages at a local scale; nets on the plots were separated by approximately 1.7 km at the closest point. A total of 157 species (133 per plot) was represented in 6023 captures of 4001 individuals. After eliminating species not likely to be well-sampled with nets, there were 122 species total with 110 and 113 on the two plots, respectively. Species-accumulation curves and abundance-rank relationships were almost identical on both plots. Capture rates were high (53 and 56 birds captured per 100 mist-net-hours, mnh) on both plots. Distributions of species and individuals among families and genera were similar on the two plots but numbers of captures of some common species differed between plots in response to small-scale variation in environmental features. Indicator-species analyses selected seven species as more characteristic of one plot and nine as more characteristic of the other. At the regional level, understory assemblages were most similar to a site in Peru but differed from sites in Brazil, Venezuela, and, especially, Costa Rica. Dissimilarity in species richness per family was related to geographic distance only when Costa Rica was included in the analysis.  相似文献   

9.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

10.
Multifactor ecological classification systems are being developed for many regions. An element of these systems not yet well understood is how disturbances, clearcutting in this instance, may alter the vegetative component of the classification units at the stand and landscape levels. We sampled 1,096 plots in 21–35 year old naturally regenerated clearcuts on the Hoosier National Forest (HNF) in south-central Indiana, USA. We examined overstory species composition of clearcut plots in comparison to reference plots (80+ years old), both within and among six Ecological Landtype Phases (ELTPs) of two ecological sections using non-metric multidimensional scaling and non-metric multi-response permutation procedures. Clearcutting drastically changed species composition in comparison to reference plots within ELTPs ranging from mixed oak-dominated ridges and slopes to bottomland, cove hardwood communities; Quercus species on ridges and slopes were replaced by Liriodendron tulipifera L. and, to a lesser degree, Prunus serotina Ehrh. and Acer rubrum L., in ELTPs of both sections. Contrasts of overstory species composition of reference plots exhibited differences among ELTPs, but clearcut plots showed mixed results and indicated very similar species composition across all ELTPs. Autogenic factors are likely the main drivers of overstory composition of clearcut sites. Species composition of ELTPs will continue to develop in response to autogenic and allogenic factors over time, and differences among ELTPs may emerge in later stages of stand development as the effects of allogenic factors accumulate. It is expected that L. tulipifera, a long-lived species, will be a dominant species in terms of basal area and density of all ELTPs in mature stands. Classification systems not designed to deal with changes related to disturbance and a failure to predict successional pathways after disturbance may limit their usefulness as a management tool in terms of overstory vegetation. For ecological classification systems to be fully effective, we must better understand the role of disturbance in ecosystem function at many different scales and integrate that knowledge into our decision-making and planning regimes to establish realistic and attainable objectives at multiple scales.  相似文献   

11.
Niche-based and neutral models of community structure posit distinct mechanisms underlying patterns in community structure; correlation between species’ distributions and habitat factors points to niche assembly while spatial pattern independent of habitat suggests neutral assembly via dispersal limitation. The challenge is to disentangle the relative contributions when both processes are operating, and to determine the scales at which each is important. We sampled shoreline plant communities on an island in Lake Michigan, varying the extent and the grain of sampling, and used both distance-based correlation methods and variance partitioning to quantify the proportion of the variation in plant species composition that was attributable to habitat factors and to spatial configuration independent of habitat. Our results were highly scale dependent. We found no distance decay of plant community similarity at the island scale (1−33 km). All of the explained variation (32%) in species composition among samples at this scale was attributed to habitat factors. However, at a site intensively sampled at a smaller scale (5−1,200 m), similarity of species composition did decay with distance. Using a coarse sampling grain (transects), habitat factors explained 40% of the variation, but the purely spatial component explained a comparable 22%. Analyzing plots within transects revealed variation in species composition that was still jointly determined by habitat and spatial factors (18 and 11% of the variance, respectively). For both grain sizes, most of the habitat component was spatially structured, reflecting an abrupt alongshore transition from sandy dunes to cobble beach. Space per se explained more variation in species composition at a second site where the habitat transition was more gradual; here, habitat acted as a less selective filter, allowing the signal of dispersal limitation to be detected more readily. We conclude that both adaptation to specific habitat factors and habitat-independent spatial position indicative of dispersal limitation determine plant species composition in this system. Our results support the prediction that dispersal limitation—a potentially, but not necessarily, neutral driver—is relatively more important at smaller scales.  相似文献   

12.
The present study compares the vegetation characteristics of two large forested and one large non-forested solution dolines in Hungary. We investigated the species composition and vegetation pattern along north to south transects (across the doline bottoms) and compared the richness of different species groups (dry and wet groups) on the doline slopes. We applied linear regression models for each slope to explore the effects of topography on species richness, and Detrended Correspondence Analysis (DCA) to detect the major gradients of floristic variation within each site. We found that the vegetation changed significantly along all transects; and, regardless of the vegetation cover, the doline bottoms contained several cool-adapted species. Variations within the two species groups were more pronounced on the south-facing slopes. The changes were similar in the forested dolines, indicating the role of forest cover in maintaining many cool-adapted species on the north-facing slopes as well. However, the number of cool-adapted species increased significantly along both slopes of the non-forested doline from the upper edge to the bottom. Contrary to our expectations, the species turnover along the slopes of the non-forested doline was lower than that along the slopes of the forested ones. We conclude that both the forested and non-forested dolines serve as refuges for many plant species adapted to different environmental conditions. Apart from providing an understanding of population patterns along environmental gradients, our results may also contribute to our understanding of an even more fundamental question for a future research agenda: the probable effects of climate change on vegetation characteristics in climatic islands with environmental conditions substantially different from the surrounding areas.  相似文献   

13.
The vegetation within an ombrotrophic mire expanse in SE Norway is studied in detail. Percentage cover of 45 species in 436 sample plots (16 ×16 cm), dispersed on 26 transects, are recorded. In addition, species abundance in 6976 subplots (4×4 cm) are recorded. 14 variables are recorded for each of the sample plots, while only distance to the water-table is estimated for the subplots. Spatial co-ordinates are supplied for all sample- and subplots. DCA ordination of a data-set consisting of 412 sample plots reveals two ecologically interpretable vegetational gradients: the hummock-hollow gradient (DCA 1), and a gradient associated with the peat-production of the bottom layer (DCA 2). Passive DCA of subplots is used to get an impression of within sample plot heterogeneity, and shows that the fine-scale compositional turnover may be considerable. Partitioning of the variation in species abundance data is done by use of (partial) CCA. The fraction of unexplained variation is rather large for all the tested data-sets, but within the total variation explained, both distance to the water-table and spatial structure explain large parts.  相似文献   

14.
Chen B  Kang L 《Oecologia》2005,144(2):187-195
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

15.
Early seral vegetation was studied on a former lake bottom after the removal of the 64‐m‐tall Glines Canyon Dam on the Elwha River. In 2015, vegetation cover of all vascular plant species was determined in 63 plots located on sites that emerged in 2011–2012. The sites had been planted and/or seeded, or were permitted to revegetate spontaneously. The plots were further classified by substrate texture: coarse sediments on the valley bottom and fine ones on the valley slopes. Plots were located randomly along random transects perpendicular to the former lake shore that extended into coarse sediment terraces perched above the floodplain. Additionally, 32 plots were sampled in surrounding native forests near these transects. Data were analyzed by detrended correspondence analysis and by canonical correspondence analysis. Substrate texture, that is whether fine or coarse, appeared to explain most of the variability in vegetation. The distance to forest and successional age, that is time since the site had been drained, were also significant explanatory variables, while assisted restoration by planting and seeding appeared to be insignificant to date. Spontaneous succession on fine sediments led to a species composition approaching that of adjacent natural forests. Invasive species were much less abundant than expected. Spontaneous restoration of vegetation on fine sediments in drained lake bottoms can rapidly produce a desirable vegetation composition and structure. On coarse sediments, active restoration may be useful to accelerate the development of native vegetation communities.  相似文献   

16.
The gobiid assemblage of the Venice Lagoon shallow waters was investigated by means of a semi‐quantitative standardized sampling (using a small beach seine), stratified into five main types of shallow subtidal habitats and conducted on a seasonal basis during 1 year. The degree of overlap in resource utilization among six coexisting goby species was assessed, along both the time axis, by analysing the seasonal variation in abundance and reproductive status (as revealed by the gonado‐somatic index) and the habitat axis, by comparing species abundance across different habitat types and controlling for the effects of some abiotic factors. Smaller species, and especially the marbled goby Pomatoschistus marmoratus , dominated the local assemblage. Although the cycle of shallow water colonization and seasonal variation in total abundance were basically similar, species showed differences in timing of reproduction and recruitment, as well as in habitat preference. The larger species belonging to the genera Gobius and Zosterisessor tended to overlap their habitat use, being more abundant in seagrass habitats than in the unvegetated habitats, whereas the smaller species belonging to the genera Knipowitschia and Pomatoschistus avoided seagrasses, preferring in most cases mud flats and salt marsh creeks. Within these two groups of species some further slight differences in species habitat preference, relationship with abiotic factors and reproductive ecology could be detected. Results are discussed in the light of both ecological mechanisms underlying coexistence of closely related species and the current knowledge of the phylogeny of Mediterranean gobies.  相似文献   

17.
宁夏贺兰山自然保护区蝴蝶群落多样性及其与环境因素的关系,2017年5-9月采用样线法对贺兰山东麓6类生境和不同干扰类型10条样线的蝴蝶群落结构及其多样性季节动态进行调查。共记录蝴蝶5科36属45种,蛱蝶科Nymphalidae的属和物种数最多,为17属19种;凤蝶科Papilionidae最少,仅1属1种。菜粉蝶Pieris rapae、云粉蝶Pontia daplidice、斑缘豆粉蝶Colias erate和小檗绢粉蝶Aporia hippia是该地区的优势种,个体数量分别占总个体数的11.76%、11.63%、11.21%和10.17%。不同生境样线优势类群和常见类群不同。蝴蝶的栖息地偏好与寄主植物有关,蝴蝶的生境分布类型可分为生境广布型、湿润平原型、荒漠半荒漠草原型和山地森林型。蝴蝶群落Shannon-Wiener多样性和丰富度指数以灰榆疏林草地生境最高,优势度最低。各物种在生境内的季节变化趋势与不同生境植被生长季节相关,高峰期为7-8月。不同调查时间蝴蝶的优势种和常见种不同。物种数以7月份调查最多,有33种,占全年调查总物种数的73.33%;5月份调查最少,有20种。蝴蝶群落Shannon-Wiener多样性和丰富度指数以8月份最大,5月份最小。蝴蝶成虫发生类型分为全年发生型、春季型、夏季型和夏秋季型。不同生境和季节发生的优势种可以作为对生境状况进行评估的指示类群。采用CCA分析物种分布与微环境因子的关系,海拔对蝴蝶物种多样性分布格局有显著影响。蝴蝶丰富度与海拔、温度、风速显著正相关。适度干扰有利于蝶类多样性增加,较强的人为干扰会影响蝶类栖息环境,降低蝶类多样性。因此,生境差异性和干扰与蝴蝶群落的物种多样性密切相关,维持贺兰山垂直植被带的生境异质性和保持适度干扰是保护蝴蝶多样性的关键。  相似文献   

18.
We address the question to which degree ridge habitats in tropical montane forests contribute to overall plant diversity by analysing patterns of pteridophyte (i.e. lycophytes and ferns) assemblages on ridges and slopes in three montane forest sites near Podocarpus National Park, Ecuador. The analyses, which involved 158 pteridophyte species (110 terrestrial, 96 epiphytic, 48 both) from 28 plots of 20 m × 20 m (or an equivalent of 400 m2), showed that more species were typical of one of the three study sites than of one of the two habitats (ridge/slope). As found in previous studies, alpha diversity on ridges was lower than on slopes, accounted for by the absence of numerous species that are found on slopes. Pteridophyte assemblages on ridges were more similar across study sites than those on slopes. Thus, unlike the structurally comparable (i.e. stunted, open) Amazonian forests, the studied montane ridge forests harbour fairly homogenous pteridophytes assemblages with very few specialised species. Our study implies that slope forests are of higher conservation priority for pteridophytes in the study region than ridge habitats. However, comparative studies are needed because other geographical regions and other groups of organisms may not share this pattern. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
 Coral reef communities of the western Atlantic have changed over the past two to three decades, but the magnitude and causes of this change remain controversial. Part of the problem is that small-scale patterns observed on individual reefs have been erroneously extrapolated to landscape and geographic scales. Understanding how reef coral assemblages vary through space is an essential prerequisite to devising sampling strategies to track the dynamics of coral reefs through time. In this paper we quantify variation in the cover of hard corals in spur-and-groove habitats (13–19 m depth) at spatial scales spanning five orders of magnitude along the Florida Reef Tract. A videographic sampling program was conducted to estimate variances in coral cover at the following hierarchical levels and corresponding spatial scales: (1) among transects within sites (0.01- to 0.1-km scale), (2) among sites within reefs (0.5- to 2-km scale), (3) among reefs within sectors of the reef tract (10- to 20-km scale), and (4) among sectors of the reef tract (50- to 100-km scale). Coral cover displayed low variability among transects within sites and among sites within reefs. This means that transects from a site adequately represented the variability of the spur-and-groove habitat of the reef as a whole. Variability among reefs within sectors was highly significant, compared with marginally significant variability among sectors. Estimates from an individual reef, therefore, did not adequately characterize nearby reefs, nor did those estimates sufficiently represent variability at the scale of the sector. The structure and composition of coral reef communities is probably determined by the interaction of multiple forcing functions operating on a variety of scales. Hierarchical analyses of coral assemblages from other geographic locations have detected high variability at scales different from those in the present study. A multiscale analysis should, therefore, precede any management decisions regarding large reef systems such as the Florida Reef Tract. Accepted: 19 July 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号