首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on phenotypic expression of rabbit vascular smooth muscle cells (SMC) of the interstitial matrix proteins collagen I and fibronectin, the basal lamina proteins collagen IV and laminin, and the serum adhesion protein vitronectin was examined in culture. Experiments were performed in foetal calf serum stripped of fibronectin and vitronectin to eliminate their confounding effects. All the proteins promoted adhesion to the plastic culture dish (in a concentration dependent manner) of SMC freshly isolated from the artery wall. These cells had a high volume density of myofilaments (Vvmyo) in their cytoplasm. Laminin was best at maintaining SMC with a high Vvmyo (Vvmyo = 49.8%) followed by collagen IV (41.7%). Cells plated on vitronectin showed the lowest Vvmyo (31.3%). The results support the concept that the SMC basal lamina has a role in maintaining cells in the high Vvmyo phenotype.  相似文献   

2.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

3.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the αvβT5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the αvβT5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either αvβT5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the βT1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of αvβT3, αvβT5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the αvβT3 or αvβT5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell-matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

4.
Angiogenesis after tissue injury occurs in a matrix environment consisting of fibrin, fibronectin, and vitronectin as the major extracellular matrix (ECM) constituents. ECM-integrin interactions is critical for angiogenesis and failure to bind a ligand to certain integrin receptors (αvβ3 or αvβ5) inhibits angiogenesis. The ligand that binds to αvβ3 or αvβ5 integrin receptors during microvascular angiogenesis has not been identified. Our hypothesis is that provisional matrix molecules provide the environmental context cues to microvascular endothelial cells and promote angiogenesis by decreased programmed cell death. Using cultured human microvascular endothelial cells, we show that vitronectin, in comparison to growth on alternative provisional matrix molecules (fibronectin, fibrinogen plus thrombin), collagen I, and basement membrane molecules (collagen IV), significantly reduces microvascular endothelial cell death in vitro. This reduction was observed using morphologic criteria, TdT-mediated dUTP nick end labeling (TUNEL) assay, histone release into the cytoplasm, and thymidine release into the supernatant. Though our data confirm that vitronectin may bind to more than one integrin receptor to reduce MEC apoptosis, binding to the αv component appears to be the critical integrin subcomponent for reducing apoptosis. J. Cell. Physiol. 175:149–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial-derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD-containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin.  相似文献   

6.
Fibronectin mediates the adhesion of fibroblasts to collagen substrates, binding first to the collagen and then to the cells. We report here that the interaction of the cells with the fibronectin-collagen complex is blocked by specific gangliosides, GD1 a and GT1, and that the sugar moieties of these gangliosides contain the inhibitory activity. The gangliosides act by binding to fibronectin, suggesting that they may be the cell surface receptor for fibronectin. Evidence is presented that other adhesion proteins or mechanisms of attachment exist for chondrocytes, epidermal cells, and transformed tumorigenic cells, since adhesion of these cells is not stimulated by fibronectin. Chondrocytes adhere via a serum factor that is more temperature-sensitive and less basic than fibronectin. Unlike that of fibroblasts chondrocyte adhesion is stimulated by low levels of gangliosides. Epidermal cells adhere preferentially to type IV (basement membrane) collagen but at a much slower rate than fibroblasts or chondrocytes. This suggests that these epidermal cells synthesize their own specific adhesion factor. Metastatic cells cultured from the T241 fibrosarcoma adhere rapidly to type IV collagen in the absence of fibronectin and do not synthesize significant amounts of collagen or fibronectin. Their growth, in contrast to that of normal fibroblasts, is unaffected by a specific inhibitor of collagen synthesis. These data indicate the importance of specific collagens and adhesion proteins in the adhesion of certain cells and suggest that a reduction in the synthesis of collagen and of fibronectin is related to some of the abnormalities observed in transformed cells.  相似文献   

7.
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.  相似文献   

8.
Extracellular matrix glycoproteins synthesized and deposited by a mouse teratocarcinoma-derived endodermal cell line (PYS-2) in culture were analysed by metabolic labelling and immunochemical methods, and the matrix structure was studied by immunofluorescence and electron microscopy. PYS-2 cells secreted two major high-molecular weight glycoproteins, laminin and type IV collagen, which were deposited in apparently unprocessed form under the cells into a lamellar matrix composed of a loose network of fine fibrils and attached dense grains. The cells did not synthesize detectable amounts of fibronectin, but the matrix was found to bind fibronectin from the culture medium. The matrix structure was sensitive to bacterial collagenase indicating a role for type IV collagen in matrix integrity. The PYS-2 matrix which contains defined basal lamina glycoproteins provides possibilities for in vitro studies on the organization of deposited basal lamina components.  相似文献   

9.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

10.
We describe a novel integrin heterodimer on the surface of the human embryonic kidney cell line 293. This receptor is comprised of alpha v and beta 1 subunits, each of which has been previously found in association with other integrin subunits. This alpha v.beta 1 complex was identified as the predominant vitronectin receptor (VnR) on the surface of 293 cells by immunoprecipitation with antibodies raised against the alpha v subunit. Polymerase chain reaction analysis detected mRNAs for alpha v and beta 1 subunits while no evidence was obtained for beta 2, beta 3, or alpha IIb integrin subunit mRNA. Immunoprecipitation of surface-iodinated proteins with antibodies to alpha v gave bands of 150 and 120 kDa. The 120-kDa band reacted with antibodies to beta 1 in immunoblotting experiments. 293 cells adhere to vitronectin, fibronectin, laminin, and collagen IV, while von Willebrand factor and fibrinogen, known ligands of the VnR (alpha v.beta 3), did not support adhesion. A polyclonal antibody directed against both subunits of the VnR (alpha v, beta 3) inhibits attachment of 293 cells to vitronectin but not to other adhesive proteins. A beta 1-specific monoclonal inhibited attachment to fibronectin, laminin, and collagen IV, known ligands of beta 1 integrins, as well as vitronectin. This novel (alpha v. beta 1) VnR thus appears to mediate cell adhesion exclusively to vitronectin, in contrast to previously described VnRs which have multiple ligands.  相似文献   

11.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

12.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of beta 1 and beta 3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning beta 1 integrins with little, if any, contribution by the alpha V beta 3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the alpha V beta 3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the beta 1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the beta 3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of beta 1 integrins binding to each matrix component: FN (alpha 5 beta 1, alpha 3 beta 1, alpha V beta 1), LN (alpha 1 beta 1, alpha 7 beta 1), VN (alpha V beta 1), I (alpha 1 beta 1, alpha 2 beta 1), and IV (alpha 1 beta 1). In contrast, the beta 3 integrin, alpha V beta 3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that beta 1 and beta 3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

13.
 Invasive extravillous trophoblast cells of the human placenta are embedded in a self-secreted extracellular matrix, the matrix-type fibrinoid. The ultrastructure and molecular composition of the matrix-type fibrinoid of the term human placenta were studied by transmission electron microscopy and immunogold labelling. We used antibodies directed against different matrix proteins such as collagen type IV, laminin, vitronectin, heparan sulfate, various fibronectin isoforms, and against the oncofetal blood group antigen, ”i”. Immunogold labelling patterns of matrix proteins are the basis for the subdivision of the trophoblast-derived matrix-type fibrinoid into mosaic-like patches of structurally and immunocytochemically different compartments. Firstly, fine granular patches with structural similarities to basal lamina material are composed solely of collagen type IV and laminin. Secondly, an ultrastructurally amorphous glossy substance shows reactivity with antibodies against heparan sulfate and vitronectin. A third type of patches, fine fibrillar networks embedded in the above-mentioned glossy matrix, are reactive with antibodies against normal fibronectin isoforms (IST-4, IST-6, IST-9) and oncofetal isoforms (BC-1, FDC-6). The blood group precursor antigen ”i” was not only expressed on the surfaces of the extravillous trophoblast cells but was associated with the fibronectin-positive fibrils. In conclusion, within this extracellular matrix, clear compartments of different composition can be distinguished from each other. Glycosylation with ”i” in this matrix may be involved in immunological masking, thus preventing rejection of placenta and fetus. Accepted: 6 May 1996  相似文献   

14.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

15.
Extracellular matrix receptors on ductus arteriosus smooth muscle cells (SMC) must enable the cells to migrate through both interstitial and basement membrane matrices to form intimal mounds during postnatal ductus closure. We examined the role of β1 and β3 integrin receptors on SMC adhesion and migration. Using a new assay to measure cell migration, we found that lamb ductus arteriosus SMC attach to and migrate over surfaces coated with fibronectin (FN), laminin (LN), vitronectin (VN), and collagens I (I) and IV (IV). Blocking antibodies, specific to different integrin complexes, showed that SMC adhesion to FN, LN, I, and IV depended exclusively on functioning β1 integrins with little, if any, contribution by the αvβ3 integrin; on the other hand, cell migration over these substrates depended to a large extent on the αvβ3 receptor. Immunofluorescent staining demonstrated that during the early phase of SMC migration, the β1 integrins organized rapidly into focal plaques that, with time, gradually covered the cell's basal surface; on the other hand, the β3 receptor remained concentrated at all times at the cell's margins. Ligand affinity chromatography and immunoprecipitation techniques identified a unique series of β1 integrins binding to each matrix component: FN (α5β1, α3β1, αvβ1), LN (α1β1, α7β1), VN (αvβ1), I (α1β1, α2β1), and IV (α1β1). In contrast, the β3 integrin, αvβ3, bound to all the substrates tested: FN, LN, VN, I, and IV. The results indicate that β1 and β3 integrins may play different roles in attachment and migration as SMC move through the vascular extracellular matrix to produce obliteration of the ductus arteriosus lumen.  相似文献   

16.
Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin αVβ3-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited αVβ3-dependent cell-mediated collagen gel contraction, PDGF BB-induced and αVβ3-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β1 integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited αVβ3-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced αVβ3-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation.  相似文献   

17.
Migratory behavior of cells on embryonic retina basal lamina   总被引:1,自引:0,他引:1  
In order to study cell translocation in vitro on a physiological substrate a novel cell migration assay was developed using the inner limiting membrane of the avian embryonic retina. The matrix sheet consists of a laminin-rich basal lamina covered by a dense layer of neuroepithelial endfeet. The retina basal lamina does not contain fibronectin. Cells translocating on this substrate displace the neuroepithelial endfeet, leaving behind tracks in the endfeet monolayer. Motility of cells and the relative forward to lateral migration can be quantitated by measuring lengths, widths, and areas of the tracks. Using this assay system, the conditions and patterns of cell migration for a variety of cells have been examined. In the absence of serum all cell types show only minor migratory activity and addition of serum to the culture medium always enhances the rate of cell migration in a saturable, dose-response manner. The serum cannot be replaced by fibronectin or vitronectin (serum spreading factor). For maximum cell migration, serum has to be constantly present in the medium; however, 58% cell migration is obtained in serum-free medium when the matrix is preincubated with serum. According to the area and linearity of the tracks, the migratory behavior of the different cells can be classified into three groups: (i) fibroblasts and the nonpigmented Bowes melanoma cells form straight and long tracks; (ii) glioma, sarcoma, and carcinoma cells from straight but short tracks, and (iii) neuronal tumor cells, epithelial cells, and pigmented B16 melanoma cells form wide and short tracks. Comparative studies with low and high metastatic clones of tumorgenic cell lines show that migratory activity and metastatic potential of cells do not necessarily correlate. Finally, we show that fibroblasts deposit fibronectin fibrils on their paths as they migrate on the basal lamina. Fibronectin trails are also seen when fibroblasts are cultured on plain basal laminae that are pretreated with detergent to remove the endfeet monolayer. Likewise, when fibroblasts are cultured in the presence of antifibronectin antibodies, the fibronectin secreted by cells is detectable. Due to antibody treatment the cellular fibronectin is precipitated and its normal fibril formation is inhibited; however, the translocation of fibroblasts is not impaired.  相似文献   

18.
Adhesion of human umbilical endothelial cells to fibronectin resulted in increased tyrosine phosphorylation of a group of proteins with molecular mass ranging from 100 to 130 kDa and of a 70 kDa protein. This pattern of tyrosine phosphorylation was also observed when endothelial cells adhered to vitronectin, collagen IV, collagen I and laminin or to culture dishes coated with antibodies directed to either βl, α3, α5, α6 or β3 integrin subunits. Increased phosphorylation of the 100–130 kDa proteins was detectable as early as 30 sec after adhesion, reached maximal level after 15 min, and remained high as long as the cells adhere to culture dishes. The 70 kDa protein was phosphorylated with a slower kinetics and its phosphorylation increased over a period of 3 h. Using specific monoclonal antibodies, the major component of the 100–130 kDa complex was identified as the focal adhesion tyrosine kinase p125FAK. The phosphorylation of the pl25FAK was also observed by inducing βl integrin clustering in rum adherent HEC, indicating that this is a primary signalling event induced by integrins. Using tyrosine kinase inhibitors, we show a direct correlation between integrin-stimulated tyrosine kinases and assembly of focal adhesions and actin fibres.  相似文献   

19.
This study describes the adhesion of human osteoblasts, culturedin vitro, to proteins of the extracellular matrix, the biosynthesis of integrins, their topography and organization in focal contacts. The adhesion of osteoblasts to laminin, type I collagen, vitronectin and fibronectin was 77–100%, in 2h and at 55nm substrata concentration, and it was accompained by spreading of the cells. Adhesion to fibronectin (FN), laminin (LN) and type I collagen (COL) was inhibited by antibodies to the β1 integrin and antibodies to the α5 chain affected adhesion only to fibronectin. Using a panel of polyclonal antibodies against α2, α3, α5, αv, β1 andβ3 integrins we detected synthesis of α3β1, α5β1, αvβ3, and an αvβ1-like dimer by immunoprecipitation of metabolically labelled cell lysates. Studies of immunolocalization demonstrated the presence of the same integrins identified in lysates, plus α4, α1 and β5 subunits. In cells adhering in the presence of serum we showed organization of β3 and αv integrins in focal contacts. In cells adhering to fibronectin α5 and β1 integrins were localized in focal contacts. In cells spread on laminin or type I collagen none of the integrins investigated was localized in focal contacts.  相似文献   

20.
Fluorometric cell attachment assays together with competitive inhibitors of adhesion were used to probe for the presence of integrins, a diverse family of heterodimeric cell-surface glycoproteins involved in cell-cell and cell-extracellular matrix adhesion, in the fibroblastic rainbow trout cell line, RTG-2. The adhesive properties of this cell line were evaluated. RTG-2 cells adhered poorly to TC plastic in the absence of serum but as little as 2.5% fetal bovine serum allowed over 75% of the cells to attach after 5 h. Surfaces coated with the extracellular matrix proteins collagen I, collagen IV, fibrin, fibrinogen, or fibronectin were able to support attachment of RTG-2 cells. Adhesion of RTG-2 cells to fibronectin varied linearly with fibronectin coating densities in the range 0 to 65 ng/mm(2). Oligopeptides containing the sequence Arg-Gly-Asp (RGD) caused dose-dependent inhibition of adhesion to microtiter plates coated with fibrin, fibrinogen, and fibronectin, whereas attachment to collagen I and collagen IV was less severely affected. In all cases, peptides containing Arg-Gly-Glu (RGE) or Asp-Gly-Arg (DGR) sequences caused no reduction of cell attachment. Since many integrins mediate adhesion by binding to RGD sequences in their target ligands, these results suggest the presence of integrin-like adhesion molecules on the surface of RTG-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号