首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
两个大麦新矮秆基因的SSR标记   总被引:2,自引:1,他引:1  
采用SSR技术对沪95-2639和91冬27携带的两个新的矮秆基因进行了分子标记.在大麦4H染色体的长臂上,发现SSR标记位点HVM67同时与这两个新的矮秆基因连锁,距91冬27的较近,约10.0cM,离沪95-2639的较远,为23.3cM.初步绘制出大麦4H染色体上矮秆基因与SSR标记位点的遗传连锁图谱.  相似文献   

2.
利用大麦 (HordeumvulgareL .)第 5染色体上RFLP探针衍生的 19个序列标志位点PCR(STS_PCR)引物对“中国春”小麦 (TriticumaestivumL .) (CS)及其ph1b突变体基因组总DNA进行PCR扩增 ,筛选出Ph1基因的一个连锁标记 ,再用“中国春”第 5部分同源群缺体_四体系和CS×ph1b突变体F2 群体证明并定位于离Ph1基因近着丝点端 5 .7cM (centiMorgan)处。然后将该标记转换成特异的序列特征扩增区 (SCAR)标记。以“阿勃”5B缺体为桥梁亲本 ,冬小麦“京 411”为受体亲本 ,“中国春”ph1b突变体为供体亲本 ,进行三轮杂交和一轮自交 ,每一轮经减数分裂分析和SCAR标记的辅助选择 ,快速地筛选出了ph1b基因型 ,并选得一个冬小麦“京 411”的ph1b中间代换系。  相似文献   

3.
余波澜  黄朝峰等 《遗传学报》2001,28(6):550-555,F003
选取大麦1H染色体的STS标记MWG913特异性扩增小麦,把得到的片段进行克隆。用Taq Ⅰ酶切分类并测序,把得到的序列同大麦的序列进行比较,依据比较结果,选取对大麦特异的内切酶,用该酶来酶切大麦、小麦、黑麦、长穗偃麦草、中间偃麦草、簇毛麦的MWG913扩增产物,获得对大麦1H染色体特异的CAPs标记。同时,依据酶切位点碱基的差异设计引物对扩增的产物进行第二次扩增,得到该位点的一对染色体特异性ASA标记。  相似文献   

4.
大麦1H特异性CAPs标记和ASA标记的创制   总被引:1,自引:0,他引:1  
选取大麦1H染色体的STS标记MWG913特异性扩增小麦,把得到的片段进行克隆.用Taq酶切分类并测序,把得到的序列同大麦的序列进行比较.依据比较结果,选取对大麦特异的内切酶,用该酶来酶切大麦、小麦、黑麦、长穗偃麦草、中间偃麦草、簇毛麦的MWG913扩增产物,获得对大麦1H染色体特异的CAPs标记.同时,依据酶切位点碱基的差异设计引物对扩增的产物进行第二次扩增,得到该位点的一对染色体特异性ASA标记.  相似文献   

5.
大麦6H染色体特异性标记的筛选和鉴定   总被引:7,自引:2,他引:5  
从大麦、小麦和小麦-大麦6H染色体附加系RAPD分析筛选出对6H染色体特异的2个RAPD标记,转换为特异性PCR标记,利用标记对不同植物材料进行PCR扩增鉴定。表明凡含有大麦6H染色体的材料(Betzes、Igri、CS6H附加系)均能扩增出特异带;而不含6H染色体的材料,包括小科、黑麦、长穗偃麦草、中间偃麦草、簇毛麦以及含有其他大麦染色体的小麦附加系均不主增出特异带。可见,2对PCR引物具有大麦  相似文献   

6.
利用RAPD标记分析大麦种质资源的遗传多样性   总被引:6,自引:4,他引:6  
利用RAPD标记对19份西藏近缘野生大麦材料、33份我国不同省市的地方品种以及8份国外引进大麦品种共60份大麦种质资源的遗传多样性进行检测.结果表明材料间遗传差异明显.32个RAPD引物中,有25个引物(占78.13%)可扩增出清晰且具多态性的条带,另外7个引物能扩增出1~3条清晰但无多态性的条带.每个引物可扩增出1~8条多态性带,平均为3.72条.32个引物共产生119条DNA片段,其中87条具有多态性,多态性比率(PPB)为73.11%,平均多态信息量(PIC)为0.434;每个位点平均有效等位基因数(Ne)为2.304;材料间遗传相似系数GS变化范围为0.757~0.981,平均值为0.871.19份来源于西藏的近缘野生大麦材料间GS值变幅为0.818~0.969,平均为0.892;33份我国栽培大麦地方品种间的GS值变化范围为0.783~0.981,平均为0.879;8份分别来自8个国家的栽培大麦品种间的GS值变幅为0.820~0.956,平均为0.882.根据RAPD标记分析的结果,对60份大麦种质资源进行聚类分析,在平均GS值0.871水平上60份大麦材料可聚为5类,聚类结果能在一定程度上反应材料的地理分布关系,但某些相同地理来源的材料也较分散地分布在整个聚类树中.本研究从分子水平上进一步证明了我国栽培大麦丰富的遗传多样性,是世界栽培大麦的遗传多样性中心之一.  相似文献   

7.
通过基因组原位杂交、重双端体测交及RFLP分析,解析了来自小麦品种"中国春"(Triticum aestivumL.cv."Chinese Spring"(CS))×大麦品种"Betzes"(Hordeum vulgare L.cv."Betzes")杂种后代15份材料的遗传组成,鉴定出6个二体异代换系;对与"中国春"重双端体DDT2A、DDT2B及DDT2D测交的F1代花粉母细胞减数分裂中期染色体构型进行观察,同时以小麦第二部分同源群短臂探针psr131进行RFLP分析,鉴定出一套遗传稳定的小麦-大麦2H二体异代换系2H(A)、2H(B)和2H(D).小麦第二部分同源群短臂探针psr131可作为追踪大麦2H染色体的RFLP标记.从代换系的生长势及其他农艺性状看,大麦2H染色体对小麦染色体2B和2D的补偿作用较好.通过考种观察到携带大麦α淀粉酶抑制蛋白基因的2H染色体导入小麦后,淀粉品质发生了改变,外观品质由原来"中国春"的半粉质转变为代换系的半角质.  相似文献   

8.
小麦-大麦2H异代换系的鉴定   总被引:2,自引:0,他引:2  
通过基因组原位杂交、重双端体测交及RFLP分析,解析了来自小麦品种 “中国春” (Triticum aestivumL. cv. “Chinese Spring” (CS))×大麦品种 “Betzes” (Hordeum vulgare L. cv. “Betzes”)杂种后代15份材料的遗传组成,鉴定出6个二体异代换系;对与 “中国春” 重双端体DDT2A、DDT2B及DDT2D测交的F1代花粉母细胞减数分裂中期染色体构型进行观察,同时以小麦第二部分同源群短臂探针psr131进行RFLP分析,鉴定出一套遗传稳定的小麦-大麦2H二体异代换系2H(A)、2H(B)和2H(D)。小麦第二部分同源群短臂探针psr131可作为追踪大麦2H染色体的RFLP标记。从代换系的生长势及其他农艺性状看,大麦2H染色体对小麦染色体2B和2D的补偿作用较好。通过考种观察到携带大麦a淀粉酶抑制蛋白基因的2H染色体导入小麦后,淀粉品质发生了改变,外观品质由原来“中国春” 的半粉质转变为代换系的半角质。  相似文献   

9.
利用22个来源于小麦(Triticum aestivum L.)和栽培大麦(Hordeum vulgare L.)的STS-PCR标记,研究了32份新疆布顿大麦(Hordeum bogdanii Wilensky)的遗传多样性.在这22个STS-PCR标记中,仅有3个标记的扩增产物经HinfⅠ、HhaⅠ、HaeⅢ和RsaⅠ 4种限制性内切酶消化后没有产生多态性DNA片段,而19个标记(占86.4%)和46种标记/酶组合(占52.3%)能够揭示材料间的多态性.在32份布顿大麦材料的88种STS-PCR标记/酶组合中,总共得到315条DNA片段,平均每个标记/酶组合能得到3.6条DNA片段.在这315条DNA片段中,共有123条片段(占39.0%)具有多态性,每一个多态性标记/酶组合能获得1~6条多态性DNA片段.STS-PCR标记揭示的32份布顿大麦的遗传距离变化范围为0.078~0.352,平均为0.198.根据STS-PCR标记的遗传距离矩阵,采用不完全加权算术平均数法(UPGMA)构建了32份布顿大麦群体间的遗传关系树状图,结果表明STS-PCR标记能将32份材料完全区分开来.同时,来源于同一地方的不同居群没有明显地聚类在一起,表明新疆布顿大麦的遗传多样性与其地理分布相关不紧密.  相似文献   

10.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

11.
Hordeum californicum(2n=2x=14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring(CS)eH. californicum amphidiploid(2n=6x=56, AABBDDHH) was established. By genomic in situ hybridization(GISH) and multicolor fluorescent in situ hybridization(FISH) using repetitive DNA clones(pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheatealien chromosome lines, including four disomic addition lines(DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines(MtH7L,MtH1 S, MtH1 L, DtH6 S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line(DSH4) and one translocation line(TH7S/1BL), were identified from the progenies derived from the crosses of CSeH. californicum amphidiploid with common wheat varieties. A total of 482 EST(expressed sequence tag) or SSR(simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2,H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5Hc, 2Hc, 6Hc, 3Hcand 1Hc, respectively. The chromosomes H1 and H6 were designated as 7Hcand 4Hc, respectively, by referring to SSR markers located on rye chromosomes.  相似文献   

12.
This paper describes a series of winter wheat - winter barley disomic addition lines developed from hybrids between winter wheat line Triticum aestivum L. 'Martonvásári 9 kr1' and the German 2-rowed winter barley cultivar Hordeum vulgare L. 'Igri'. The barley chromosomes in a wheat background were identified from the fluorescent in situ hybridization (FISH) patterns obtained with various combinations of repetitive DNA probes: GAA-HvT01 and pTa71-HvT01. The disomic addition lines 2H, 3H, and 4H and the 1HS isochromosome were identified on the basis of a 2-colour FISH with the DNA probe pairs GAA-pAs1, GAA-HvT01, and pTa71-HvT01. Genomic in situ hybridization was used to confirm the presence of the barley chromosomes in the wheat genome. The identification of the barley chromosomes in the addition lines was further confirmed with simple-sequence repeat markers. The addition lines were also characterized morphologically.  相似文献   

13.
Xu H  Yin D  Li L  Wang Q  Li X  Yang X  Liu W  An D 《Cytogenetic and genome research》2012,136(3):220-228
To develop a set of molecular markers specific for the chromosome arms of rye, a total of 1,098 and 93 primer pairs derived from the expressed sequence tag (EST) sequences distributed on all 21 wheat chromosomes and 7 rye chromosomes, respectively, were initially screened on common wheat 'Chinese Spring' and rye cultivar 'Imperial'. Four hundred and fourteen EST-based markers were specific for the rye genome. Seven disomic chromosome addition lines, 10 telosomic addition lines and 1 translocation line of 'Chinese Spring-Imperial' were confirmed by genomic in situ hybridization and fluorescencein situ hybridization, and used to screen the rye-specific markers. Thirty-one of the 414 markers produced stable specific amplicons in 'Imperial', as well as individual addition lines and were assigned to 13 chromosome arms of rye except for 6RS. Six rye cultivars, wheat cultivar 'Xiaoyan 6' and accessions of 4 wheat relatives were then used to test the specificity of the 31 EST-based markers. To confirm the specificity, 4 wheat-rye derivatives of 'Xiaoyan 6 × German White', with chromosomes 1RS, 2R and 4R, were amplified by some of the EST-based markers. The results indicated that they can effectively be used to detect corresponding rye chromosomes or chromosome arms introgressed into a wheat background, and hence to accelerate the utilization of rye genes in wheat breeding.  相似文献   

14.
E D Nagy  M Molnár-Láng  G Linc  L Láng 《Génome》2002,45(6):1238-1247
Five wheat-barley translocations in a wheat background were characterized through the combination of cytogenetic and molecular genetic approaches. The wheat chromosome segments involved in the translocations were identified using sequential GISH and two-colour FISH with the probes pSc119.2 and pAs1. The barley chromatin in these lines was identified using SSR markers. A total of 45 markers distributed over the total barley genome were selected from a recently published linkage map of barley and tested on the translocation lines. The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS, and 7DL.7DS-5HS. Wheat-barley disomic and ditelosomic addition lines for the chromosomes 3HS, 4H, 4HL, 5H, 5HL, and 6HS were used to determine the correct location of 21 markers and the position of the centromere. An intragenomic translocation breakpoint was detected on the short arm of the barley chromosome 5H with the help of SSR marker analysis. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and the interspecific translocation breakpoints, as well as the centromere, as physical landmarks.  相似文献   

15.
Barley has several important traits that might be used in the genetic improvement of wheat. For this report, we have produced wheat-barley recombinants involving barley chromosomes 4 (4H) and 7 (5H). Wheat-barley disomic addition lines were crossed with 'Chinese Spring' wheat carrying the phlb mutation to promote homoeologous pairing. Selection was performed using polymerase chain reaction (PCR) markers to identify lines with the barley chromosome in the ph1b background. These lines were self pollinated, and recombinants were identified using sequence-tagged-site (STS) primer sets that allowed differentiation between barley and wheat chromosomes. Several recombinant lines were isolated that involved different STS-PCR markers. Recombination was confirmed by allowing the lines to self pollinate and rescreening the progeny via STS-PCR. Progeny testing confirmed 9 recombinants involving barley chromosome 4 (4H) and 11 recombinants involving barley chromosome 7 (5H). Some recombinants were observed cytologically to eliminate the possibility of broken chromosomes. Since transmission of the recombinant chromosomes was lower than expected and since seed set was reduced in recombinant lines, the utility of producing recombinants with this method is uncertain.  相似文献   

16.
17.
Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat--alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtHIS, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5Hc, 2He, 6Hc, 3Hc and 1Hc, respectively. The chromosomes H1 and H6 were designated as 7Hc and 4Hc, respectively, by referring to SSR markers located on rye chromosomes.  相似文献   

18.
From about 10000 PCR-based EST markers of barley we chose 1421 EST markers that were demonstrated to be amplified differently by PCR between wheat (Triticum aestivum cv. Chinese Spring) and barley (Hordeum vulgare cv. Betzes). We assigned them to the seven barley chromosomes (1H to 7H) by PCR analysis using a set of wheat-barley chromosome addition lines. We successfully assigned 701 (49.3%) EST markers to the barley chromosomes: 75 to 1H, 127 to 2H, 119 to 3H, 94 to 4H, 108 to 5H, 81 to 6H and 97 to 7H. By using a set of Betzes barley telosomic addition lines of Chinese Spring, we could successfully determine the chromosome-arm (S or L) location of at least 90% of the EST markers assigned to each barley chromosome. We conducted a trial mapping using 90 EST markers assigned to 7HS (49) or 7HL (41) and 19 wheat lines carrying 7H structural changes. More EST markers were found in the distal region than in the proximal region.  相似文献   

19.
筛选利用小麦微卫星标记追踪簇毛麦各条染色体   总被引:11,自引:0,他引:11  
张伟  高安礼  周波  陈佩度 《遗传学报》2006,33(3):236-243
选用定位于普通小麦7个部分同源群上的276对微卫星引物对普通小麦中同春和簇毛麦的基因组DNA进行扩增分析,有148对引物可在两个物种间检测到多态性。利用上述显示多态性的引物进一步对7个中国春-簇毛麦二体附加系进行扩增分析,筛选出分别可用来追踪簇毛麦1V至7V染色体的引物wmc49(1BS)、wmc25(2BS)、gdm36(3DS)、gdml45(4AL)、wmc233(5DS)、wmc256(6AL)和gwm344(7BL)。此外还发现6DS上的微卫星引物gwm469可以用来追踪簇毛麦的2V染色体;2DS上的微卫星引物gdm107可用来追踪簇毛麦的6V染色体。进一步用涉及不同簇毛麦和小麦背景的小麦一簇毛麦染色体附加系、代换系和易位系进行扩增分析,这些微卫星标记也可用来鉴定簇毛麦的各条染色体。因此,这然簇毛麦染色体特异的微卫星标记可用来追踪普通小麦背景中的簇毛麦染色体。  相似文献   

20.
Zhong 5 is a partial amphiploid (2n = 56) between Triticum aestivum (2n = 42) and Thinopyrum intermedium (2n = 42) carrying all the chromosomes of wheat and seven pairs of chromosomes from Th. intermedium. Following further backcrossing to wheat, six independent stable 2n = 44 lines were obtained representing 4 disomic chromosome addition lines. One chromosome confers barley yellow dwarf virus (BYDV) resistance, whereas two other chromosomes carry leaf and stem rust resistance; one of the latter also confers stripe rust resistance. Using RFLP and isozyme markers we have shown that the extra chromosome in the Zhong 5-derived BYDV resistant disomic addition lines (Z1, Z2, or Z6) belongs to the homoeologous group 2. It therefore carries a different locus to the BYDV resistant group 7 addition, L1, described previously. The leaf, stem, and stripe rust resistant line (Z4) carries an added group 7 chromosome. The line Z3 has neither BYDV nor rust resistance, is not a group 2 or group 7 addition, and is probably a group 1 addition. The line Z5 is leaf and stem rust resistant, is not stripe rust resistant, and its homoeology remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号