首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By immunohistochemistry and immunofluorescence methods, we observed that the analog of proliferating cell nuclear antigen (PCNA) in Dunaliella tertiolecta Butcher (Chlorophyceae) was exclusively located in the nucleus. Among positively stained cells, PCNA abundance varied, being highest in S-phase cells, lower in others, and undetectable in early G1- or late M-phase cells. In exponentially growing and partially synchronized cultures, the percentage of PCNA-stained cells (% PCNA-stained cells) oscillated in the photocycle (12:12 h LD). It increased during the light period and reached a peak (75%) before the onset of the dark period when the culture was mainly (71%) in the S phase of the cell cycle. The DNA synthesis inhibitor, hydroxyurea, depressed PCNA abundance, whereas no effect was detected for the mitosis inhibitor colchicine. We conclude that PCNA in D. tertiolecta is associated with the S phase of the cell cycle where it is accumulated and functioning. PCNA was used to characterize the growth pattern of cultures grown in different media, temperatures, and growth stages. The time lag between the PCNA-stained phase and the M phase was very short in a continuous culture grown in reduced f/2 medium at 22°C and was considerably longer in the cultures grown in f/2 at 15°C. When an exponentially growing culture grew older, % PCNA-stained cells decreased. In a late stationary culture where there was no net growth, a small number of cells were still cycling through the PCNA-stained phase and cell division. In the continuous culture grown at 22°C, the duration of the PCNA-stained phase (Ts) was 13 h. Calculations with this Ts and % PCNA-stained cells yielded a growth rate of 0.77 d?1, which was close to that obtained by cell counts (0.69 d?1). Taken together, the results suggest that PCNA is a useful indicator of growth status and a promising cell cycle marker for estimation of species-specific growth rate.  相似文献   

2.
Cell‐cycle effects in phytoplankton have both general and specific influences over a variety of cellular processes. Understanding these effects requires that the majority of cells in a culture are progressing through the same cell‐cycle stage, which requires synchronous growth. We report the development of a silicon starvation–recovery synchrony for the first diatom with a sequenced genome, Thalassiosira pseudonana Hasle et Heimdale, which provides several novel insights into the process of cell‐wall formation. After 24 h of silicate starvation, flow cytometry measurements indicated that 80% of the cells were arrested in the early G1 phase of the cell cycle and then upon silicate replenishment progressed synchronously through the cycle. An early G1‐arrest point was not previously documented in diatoms. After silicate replenishment, girdle‐band synthesis was confined to a particular period in G1, and cells did not lengthen in accordance with each girdle band added, which has implications related to cell growth and separation processes in diatoms. Measurements of silicic acid uptake, intracellular pools, and silica incorporation into the cell wall, coupled with fluorescence visualization of newly synthesized cell‐wall structures, provide the first direct measurements of silica amounts in individual girdle bands and valves in a diatom. Fluorescence imaging indicated why valves in T. pseudonana do not have to reduce in size with each generation and enabled visualization of intermediates in structure formation. The development of a synchrony procedure for T. pseudonana enables correlation of cellular events with the cell cycle, which should facilitate the use of genomic information.  相似文献   

3.
The relatively non-toxic dye, rhodamine 123 (R123), was incorporated into the frustule of Thalassiosira weissflogii Grun. clone ACTIN in direct proportion to biogenic silica (BSi). R123 was used together with the DNA stain propidium iodide to track and quantify Si deposition during the cell cycle of T. weissflogii using flow cytometry. Silicon deposition was not continuous through the cell cycle. Deposition of the valves occurred during M phase. The hypocingulum was largely deposited during G1 with some suggestion of minor girdle band deposition during G2. Silicon deposition did not occur during S phase. Assuming that a complete frustule consists of an epivalve, epicingulum, hypocingulum, and hypovalve, then 40% of cellular BSi was contained within the cingulum of T. weissflogii with 60% present in the valves. These percentages correspond to 0.38 pmol Si in the two cingula and 0.57 pmol Si in the valves. Temporal differences in the timing of silicic acid uptake and deposition during the cell cycle of T. weissflogii suggested that deposition of both the new valves and the cingulum is supported by an internal pool of dissolved Si acquired during G2.  相似文献   

4.
The timing of replication and division of the Chlamydomonas Ehrenberg nucleus in the vegetative cell cycle and at gametogenesis was examined, using fluorescence microspectrophotometry with two fluorochromes, mithramycin and 4′,6-diamidino-2-phenylindole (DAPI). Under appropriate conditions, these bind specifically to DNA, and the fluorescence of the DNA fluorochrome complex is a quantitative measure of the DNA content. The alga is a haplont, which produces 2n daughter cells at the time of vegetative reproduction; cytokinesis and daughter cell release lag behind karyokinesis. No nucleus was found to contain more than the 2c quantity of DNA. Hence daughter cell production proceeds by doubling of the nuclear DNA followed by karyokinesis, in a repetitive sequence. As reported previously for C. reinhardtii Dangeard, the gametes of C. moewusii Gerloff contain the 1c amount of nuclear DNA. Several conflicting interpretations of the cell cycle sequence proposed in the literature were resolved.  相似文献   

5.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

6.
The growth rate of an oceanic dinoflagellate, Ceratium teres Kofoid, was investigated in the Sargasso and Caribbean Seas from September 1989 to July 1990 using the cell cycle analysis method. Estimated growth rates ranged from 0.29 to 0.58 day?1 and were 1.5–7.2 times higher than generally accepted rates for oceanic dinoflagellates. The higher rates in this report were mainly due to an improvement in techniques that determine the duration of a terminal cell cycle phase in situ. The day-to-day variation in growth rates was surprisingly small, but, from long-term measurements, a weak correlation was found among temperature, daily irradiance, and seasonal growth rate. The calculated species-specific primary production ranged from 0.5 to 1.8 mg C·m?2·day?1, about 1% of the estimated total production. Ceratium teres may be an important carbon source at the base of the grazing food chain.  相似文献   

7.
The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light‐ (E), nitrogen‐ (N), and phosphorus‐ (P) limited growth rates. In all growth conditions investigated, the decrease in the growth rate was linked with a higher relative contribution of the G2+M phase. The other phases of the cell cycle, G1 and S, showed different patterns, depending on the type of limitation. All experiments showed a highly significant increase in the amount of biogenic silica per cell and per cell surface with decreasing growth rates. At low growth rates, the G2+M elongation allowed an increase of the silicification of the cells. This pattern could be explained by the major uptake of silicon during the G2+M phase and by the independence of this process on the requirements of the other elements. This was illustrated by the elemental ratios Si/C and Si/N that increased from 2‐ to 6‐fold, depending of the type of limitation, whereas the C/N ratio decreased by 10% (E limitation) or increased by 50% (P limitation). The variations of the ratios clearly demonstrate the uncoupling of the Si metabolism compared with the C and N metabolisms. This uncoupling enabled us to explain that in any of the growth condition investigated, the silicification of the cells increased at low growth rates, whereas carbon and nitrogen cellular content are differently regulated, depending of the growth conditions.  相似文献   

8.
Nuclei have been isolated from unsynchronized cultures of Chinese hamster fibroblasts after varying intervals of growth following the incorporation of thymidine -3H for 20 min. These nuclei were fractionated by unit gravity sedimentation in a stabilizing density gradient of sucrose, and fractions were analyzed for the concentration of nuclei, DNA, and radioactivity. A more rapidly sedimenting population of nuclei in the G2 phase of the cell cycle was separated from a group of nuclei in the G1 phase, and nuclei in progressive stages of DNA synthesis (S phase) were distributed between these two regions. The fractionation of intact cells by sedimentation according to their position in the cell cycle was found to be less satisfactory than the corresponding separation of nuclei. This probably results from the continuous accumulation of mass within individual cells throughout the entire cell cycle, whereas most of the mass of a nucleus is replicated during a relatively narrow interval of the total cell cycle.  相似文献   

9.
Synchronous cultures of the cell wall-less mutant Chlamydomonas reinhardtii Dangeard cw 15 were grown under different mean irradiances and different illumination regimes, which produced cell cycles that differed in the number of daughter cells released from one mother cell, in the length of the cell cycle, and in the growth rate. During the cell cycle, the cells reached several commitment points whose number and timing differed according to the particular pattern of the cell cycle. The cell volume was used as a growth parameter and increased in a stepwise manner. Each of the steps consisted of periods of both fast and slow growth. Growth usually stopped when the cells attained a volume twice that of the preceding step. Reaching particular commitment points was coupled with the position of these points in the enlargement of cell volume. Changes in the activity of histone H1 kinase were noted during the cell cycles of all experimental variants, and the activities were compared with the timing of various commitment points. It was found that kinase activity varied markedly within a single cell cycle, attaining maximal values when the cellular volume had doubled. Each peak in kinase activity slightly preceded the commitment to an individual sequence of reproductive events. In addition to the oscillations related to cell growth, a peak of kinase activity always occurred toward the end of the cell cycle when multiple rounds of DNA replication, mitosis, and cell division occurred.  相似文献   

10.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle.  相似文献   

11.
Proliferating cell nuclear antigen (PCNA) is an auxiliary protein for polymerase-δ and therefore is essential for cellular DNA synthesis. The synthesis and abundance of PCNA in the cell are cell-cycle-dependent, both increasing markedly during the S phase. Such a protein could be a useful cell cycle marker, which is required for estimating algal species-specific growth rates via the cell cycle approach. By using commercially available monoclonal anti-rat-PCNA antibody and an enhanced chemiluminescence technique, PCNA-like proteins were detected in four species of marine phytoplankton. The strong single band detected on western blots of Isochrysis galbana Parke, Thalassiosira weissflogii Cleve, and Dunaliella tertiolecta Butcher had an apparent molecular weight of 33–36 kDa. This molecular weight is within the range as observed for PCNA in a wide phylogenetic array of organisms (33–36 kDa). In the diatom Skeletonema costatum (Grev.) Cleve, the PCNA antibody detected a major band of about 19 kDa as well as a minor band of 38 kDa. The detected proteins were specifically recognized by the monoclonal anti-rat-PCNA antibody. The PCNA-like proteins in I. galbana, T. weissflogii, and D. tertiolecta were more abundant in the exponential growth stage and then decreased and became undetectable in the late stationary stage. Our results show that the detected antigens appear to be algal analogs of PCNA.  相似文献   

12.
以粟酒裂殖酵母(Schizosaccharomyces pombe)为研究材料,研究了Ca~(2+)在细胞周期时相中的作用。当外源Ca~(2+)浓度在0.5-20 mmol/L范围内,随Ca~(2+)浓度增加,细胞增殖速度加快,延滞期逐渐缩短。但SD-Ca(CaCl2省略)并不能终止Sch. pombe的细胞周期。采用缺氮对群体细胞进行同步化,并以EGTA 螯合培养介质中低浓度的Ca~(2+),Sch. pombe 细胞增殖被完全抑制,细胞流式法测定结果表明:细胞周期被终止在G1期。分析认为Ca~(2+) 对Sch. pombe 细胞增殖是必不可少的,外源Ca~(2+)在G1期向S期转化过程中起着关键性的作用。  相似文献   

13.
Decreased net population growth rates and cellular abundances have been observed in dinoflagellate species exposed to small‐scale turbulence. Here, we investigated whether these effects were caused by alterations in the cell cycle and/or by cell mortality and, in turn, whether these two mechanisms depended on the duration of exposure to turbulence. The study was conducted on the toxic dinoflagellate Alexandrium minutum Halim, with the same experimental design and setup used in previous studies to allow direct comparison among results. A combination of microscopy and Coulter Counter measurements allowed us to detect cell mortality, based on the biovolume of broken cells and thecae. The turbulence applied during the exponential growth phase caused an immediate transitory arrest in the G2/M phase, but significant mortality did not occur. This finding suggests that high intensities of small‐scale turbulence can alter the cell division, likely affecting the correct chromosome segregation during the dinomitosis. When shaking persisted for >4 d, mortality signals and presence of anomalously swollen cells appeared, hinting at the activation of mechanisms that induce programmed cell death. Our study suggests that the sensitivity of dinoflagellates to turbulence may drive these organisms to find the most favorable (calm) conditions to complete their division cycle.  相似文献   

14.
Synchronized populations of the chlorococcal alga Scenedesmus armatus (Chod.) Chod. were grown under five irradiance levels. During the cell cycles of these populations, reproductive processes such as DNA replication, nuclear division, protoplast fission, and daughter cell release and growth processes such as RNA and protein accumulation were followed. The amount of RNA and proteins increased stepwise with a short time interval between individual steps during which the rate of RNA and protein accumulation decreased. At each of the steps, the amount of RNA and protein approximately doubled and the number of steps increased with irradiance. At the end of each of the growth steps, a commitment to trigger the sequence of reproductive events (DNA replication, nuclear division, protoplast fission) was attained. After attaining the commitment point, the cells were able to trigger and terminate the whole reproductive sequence without any further growth, that is, even in the dark when the external supply of energy was cut off. With increasing irradiance, the number of commitment points attained during one cell cycle increased from one to four. Consequently, one to four sequences of the reproductive steps were triggered, and each of them ended by doubling the reproductive structures, which resulted in the formation of 2, 4, 8, or 16 daughter cells. The length of the precommitment periods shortened with increasing irradiance as the result of an increasing rate in growth. The length of postcommitment periods showed light independence and remained constant at the range of irradiances at which the number of growth steps and, consequently, the number of sequences of reproductive events did not change. At higher irradiances, the number of sequences of reproductive events increased, which caused a prolongation of postcommitment periods. The length of the cell cycle varied as a result of this distinct effect of irradiance on pre- and postcommitment periods.  相似文献   

15.
钙调素对细胞周期的调节   总被引:1,自引:0,他引:1  
RC3细胞是一种用真核表达载体1~(CaM)转染NIH 3T3细胞建成的可调钙凋素(Calmodulin,CaM)高表达细胞模型。通过分子杂交及蛋白免疫印迹方法证实在地塞米松(Dexamethasome,DXM)作用下,RC3细胞可高表达CaM。CaM的过表达使G_1期细胞减少,S期细胞增加;CaM拮抗剂三氟拉嗪(trifluoperazine,TFP)则使G_1期细胞增加,S期细胞减少。高表达CaM使细胞分裂指数提高,G_2期细胞减少,有丝分裂前期细胞增加,M中期细胞比例下降。而TFP处理则使分裂指数下降,G_2期细胞增加,M前期细胞减少,M中期细胞增加。实验结果表明CaM在G_1/S、G_2/M和M中期/M后期3个位点上对细胞周期进行调控;通过加速G_1至S期,G_2至M期和M中期至M后期的进程,使细胞倍增时间缩短,促进细胞增殖。本工作表明,RC3细胞作为CaM表达可调细胞模型,是研究细胞周期调控的有力工具。  相似文献   

16.
The cell wall of the red microalgae Porphyridium sp. (UTEX 637) comprises a complex amorphous polysaccharide (6–7 × 106 Da). The polysaccharide is made up of xylose, glucose, and galactose as the main sugars, as well as some minor sugars, protein, sulfate, and glucuronic acid, the latter two conferring a negative charge on the polysaccharide. In this study, we used synchronized cultures as one of the ways of unraveling the mechanism of biosynthesis of this complex polysaccharide by following cell-wall formation during the cell cycle. Synchronization of Porphyridium sp. was achieved with an alternating light:dark regime of 12:12 h LD and dilution of the culture at the end of the cycle. Under these conditions, cell duplication occurred between the 12th and 14th hours of the cycle. The following order of building toward formation of the final polysaccharide appeared to take place: Intermediate polysaccharides with molecular masses ranging from 0.5 × 106 to 2 × 106 Da appeared in succession during hours 2–6 of the cycle, and the full-sized polysaccharide was detected by the 8th hour. At the beginning of the cycle, xylose was the predominant sugar. Sulfur peaked at hours 2–4; glucose, galactose, and glucuronic acid at hours 8–12; and the minor sugars at hours 12–14. Upon incubation of low molecular mass polymer (0.5 × 106 Da) collected from the 4th hour with cellular crude extract from cells of the 6th hour of the cycle, two intermediates were formed (0.8 × 106 Da and 2 × 106 Da). We suggest that the 0.5 × 106 Da polymer intermediate, which is composed mainly of xylose, is the first polymer secreted into the medium, where it is further polymerized enzymatically to produce the 2 × 106 Da polymer via an intermediate 0.8 × 106 Da polymer. Later, the full-size polysaccharide is produced.  相似文献   

17.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

18.
The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle. The number of nuclear pores/nucleus was calculated from the experimentally determined values of nuclear pores/µ2 and the nuclear surface. In the lymphocyte system the number of pores/nucleus approximately doubles during the 48 hr after PHA stimulation. The increase in pore frequency is biphasic and the first increase seems to be related to an increase in the rate of protein synthesis. The second increase in pores/nucleus appears to be correlated with the onset of DNA synthesis. In the HeLa cell system, we could also observe a biphasic change in pore formation. Nuclear pores are formed at the highest rate during the first hour after mitosis. A second increase in the rate of pore formation corresponds in time with an increase in the rate of nuclear acidic protein synthesis shortly before S phase. The total number of nuclear pores in HeLa cells doubles from ~2000 in G1 to ~4000 at the end of the cell cycle. The doubling of the nuclear volume and the number of nuclear pores might be correlated to the doubling of DNA content. Another correspondence with the nuclear pore number in S phase is found in the number of simultaneously replicating replication sites. This number may be fortuitous but leads to the rather speculative possibility that the nuclear pore might be the site of initiation and/or replication of DNA as well as the site of nucleocytoplasmic exchange. That is, the nuclear pore complex may have multiple functions.  相似文献   

19.
Changes in the amount of heat shock-related ubiquitinated proteins in Chlamydomonas were investigated during the cell cycle and gamete induction. In a division-synchronized culture induced by periodic illumination, the amount of the 28-kDa ubiquitinated protein increased during the dark phase. This increase correlated with the increase of total DNA. Such an increase was repressed when nuclear DNA replication was inhibited with aphidicolin. These results suggest that ubiquitination to form the 28-kDa protein is involved in nuclear DNA replication or during the cell cycle. The amount of 31-kDa ubiquitinated protein gradually increased throughout the light phase and decreased in the dark phase. The amount of 28-kDa ubiquitinated protein also increased during gamete induction caused by nitrogen starvation, while that of the 31-kDa did not. These results suggest that the change of ubiquitination of 28-kDa protein mat play a fundamental role in the cell cycle and gamete induction in Chlamydomonas.  相似文献   

20.
Synchronous release of ellipsoidal biflagellated zoo-spores from thick-walled akinetes of Haematococcus lacustris (Gir.) Rostaf. (UTEX 16) was induced. After being released, the zoospores divided rapidly at a rate that depended on the initial concentration of urea in the culture medium. Cells fused after approximately five doublings, and the DNA content of most cells doubled within 50 h. Spherical nonmotile palmella cells and aplanospores appeared after 100 h of incubation in media containing high (1.7 g·L?1) and low (0.85 g·L?1) urea concentrations. Thereafter, the number of nonmotile cells increased with time, whereas motile cell numbers decreased with time. Nonmotile cells continued to grow and divide by forming 4–32 aplanospores, for up to 200 h of incubation in the high-urea medium. The size of the nonmotile cells and the number of daughter cells formed within was inversely proportional to the growth rate of the cultures. Within the first 100 h of incubation, dry weight biomass of the zoo-spores increased from about 0.3 to 0.8 g·L?1. In the following 180 h, dry weight biomass reached 1.7 g·L?1 in the low-urea medium and 2.5 g·L?1 in the high-urea medium. The astaxanthin content of zoospores decreased with time, whereas there was a net accumulation of astaxanthin in the nonmotile cells. The specific rate of accumulation of astaxanthin in motile and nonmotile cells, however, was practically identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号