首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Todd A. Crowl 《Hydrobiologia》1989,183(2):133-140
Laboratory experiments were performed in clear and turbid water to determine the effects of prey size, orientation, and movement on the reactive distance of largemouth bass (Micropterus salmoides) when feeding on crayfish (Procambarus acutus). In clear water, the reactive distance increased linearly with an increase in prey size, and prey movement resulted in a significant increase in the reactive distance. Prey orientation (head-on versus perpendicular) did not change the reactive distances. In moderately turbid water, the reactive distance did not increase with increased prey size, and prey movement did not result in any changes in the reactive distance. The absence of any effects of prey orientation in clear water or prey movement in turbid water is inconsistent with results from studies using different species (primarily planktivorous fish). I propose that largemouth bass change their foraging tactics as prey visibility changes. When prey are highly visible (low turbidity), predators attack (react) only after prey recognition, which is based on multiple cues such as prey size (length, width) and movement. When prey are less visible (high turbidity), predators attack immediately upon initial prey sighting, which does not depend on prey size or movement.  相似文献   

2.
Functional responses of five cyprinid species to planktonic prey   总被引:1,自引:0,他引:1  
Synopsis The functional responses of five species of cyprinids (Chalcalburnus chalcoides, Vimba vimba, Abramis brama, Rutilus rutilus, and Scardinius erythrophthalmus) feeding on four planktonic prey types were measured in the laboratory. Although no alternative prey types were present, the response curves were sigmoid in most cases, because attack rates were not independent of prey density. The findings are explained as being the overt expression of the fishes& foraging tactics. The chief way of maximizing food uptake, according to our interpretation, is accelerating attack rates with increasing prey density. The ability of prey to escape or relative prey size may interfere with this strategy. C. chalcoides, the only obligatory planktivore among the species studied, attacks at higher rates and responds most markedly to changes in prey density.  相似文献   

3.
In an experiment on the effect of zooplankton density on feeding behaviour and prey size selection in Atlantic salmon (Salmo salar) alevins, total behavioural activity (feeding, social, ambiguous) was positively related to prey abundance up to a density of 350 items 1?1, after which activity peaked. Feeding error (missed attacks and/or rejected ingestions) increased with prey density. The likelihood that an alevin would attack an item upon which it had binocularly fixed (no. bites/no. visual fixes) peaked at densities of 270 items 1?1 and then declined. Feeding success (no. ingestions per bite or per fixation) also peaked and then declined. Changes in success were reflected in total number of items found in the gut. At high prey abundance (608 items 1?1) only 0.5 – 0.9 mm copepods were preferred components of alevin diets. Over all prey densities, preferred sizes of cladocerans and copepods did not overlap. These results may reflect a perceptual constraint (at high zooplankton densities) on alevin feeding behaviour.  相似文献   

4.
Stonefly nymphs use hydrodynamic cues to discriminate between prey   总被引:1,自引:0,他引:1  
Summary Playback experiments conducted in a Rocky Mountain, USA, stream determined whether predatory stonefly nymphs (Kogotus modestus; Plecoptera: PerlodiMae) used hydrodynamic cues to discriminate prey species from nonprey species. In the laboratory we recorded pressure wave patterns associated with swimming escape behavior of Baetis bicaudatus (Baetidae), the favored mayfly prey species, and those of a nonprey mayfly, Ephemerella infrequens (Ephemerellidae). We video taped the responses of 24-h starved Kogotus to Baetis playbacks, Ephemerella playbacks or no playbacks made by oscillating (or not) live mayflies (Ephemerella) or clear plastic models placed within in situ flow-through observation boxes. The probability of attacks per encounter with Baetis playbacks was highest and independent of the model type used, but Kogotus also showed an unexpected high probability of attacks per encounter when Ephemerella playbacks were made through live Ephemerella. Thus, Kogotus discriminated between Baetis and Ephemerella swimming patterns but only when playbacks were made through the plastic model. Kogotus never attacked motionless mayflies or motionless plastic models. We allowed some Kogotus to successfully capture one small Baetis immediately before playbacks, which resulted in a much higher probability of attacks per encounter with Baetis playbacks on either model and a heightened discrimination of prey versus nonprey playbacks. The probability of attacks per encounter by Kogotus with live Baetis swimming under similar experimental conditions was strikingly similar to its response to Baetis playbacks made by oscillating the plastic model after a successful capture. Order of playback presentation (Baetis first or Ephemerella first) did not influence predatory responses to mayfly swimming patterns. This study is the first to document the use of hydrodynamic cues by stream-dwelling predators for discrimination of prey from nonprey and provides a mechanism to explain selective predation by stoneflies on Baetis in nature.  相似文献   

5.
Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.  相似文献   

6.
F. A. Streams 《Oecologia》1994,98(1):57-63
The number of encounters per prey, the proportion of encounters resulting in attacks, and the proportion of attacks that were successful were observed while fourth-instar Notonecta undulata nymphs preyed on smaller N. undulata nymphs. While encounters per prey and proportion of encounters resulting in attacks increased with prey size, the proportion of attacks that were successful decreased. The increase in encounter rate per prey was due in part to an increase in the predator's reactive distance to prey as prey size increased. While none of the attack parameters varied significantly with prey density, logarithmic regression of the number of encounters per unit search time on prey density suggested that prey density tends to have a positive effect on encounters per first-instar prey but a negative effect on encounters per second-instar prey. A functional response model is presented that incorporates components of the predator's attack rate as exponential functions of prey density and allows for effects of the time the predator may spend evaluating prey encountered but not attacked and time spent attacking prey not captured. Estimates of the attack parameters derived from the experimental data are used in the model to generate functional response curves for fourth-instar N. undulata preying on first- or second-instar conspecifics. The predicted curve for second-instar prey is typical type II but the curve for firstinstar prey is slightly positively density dependent at low prey densities, i.e., type III.  相似文献   

7.
Coevolution of a marine gastropod predator and its dangerous bivalve prey   总被引:2,自引:0,他引:2  
The fossil record of the interaction between the predatory whelk Sinistrofulgur and its dangerous hard‐shelled bivalve prey Mercenaria in the Plio‐Pleistocene of Florida was examined to evaluate the hypothesis that coevolution was a major driving force shaping the species interaction. Whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shells, as well as to their prey. Mercenaria evolved a larger shell in response to an intensifying level of whelk predation. Reciprocally, an increase in attack success (ratio of successful to unsuccessful attacks) and degree of stereotypy of attack position by the predator suggest reciprocal adaptation by Sinistrofulgur to increase efficiency in exploiting hard‐shelled prey. A decrease in prey effectiveness (ratio of unsuccessful to total whelk predation attempts) and an increase in the minimum boundary of a size refuge from whelk predation for Mercenaria may indicate that predator adaptation has outpaced prey antipredatory adaptation. Evolutionary size increase in Sinistrofulgur most likely occurred in response to prey adaptation to decrease the likelihood of feeding‐induced shell breakage and unsuccessful predation when encounters with damage‐inducing prey occur, coupled with (or reinforced by) an evolutionary response to the whelk's own predators. Predator adaptation to Mercenaria best explains temporal changes in whelk behaviour to decrease performance loss (shell breakage) associated with feeding on hard‐shelled prey; this behavioural change limits attacks on prey to when the whelk's shell lip is thickest and most resistant to breakage. Despite evidence of reciprocal adaptation between predator and prey, the contribution of Mercenaria to Sinistrofulgur evolution is likely only a component of the predator's response to dangerous bivalve prey. This study highlights the importance of understanding the interactions among several species in order to provide the appropriate context to test evolutionary hypotheses about any specific pair of species. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 409–436.  相似文献   

8.
Numerous studies have shown warning coloration to facilitate the discrimination of edible and inedible prey. However, inedible insect species may possess cryptic coloration as well. It has been shown that some other visual features (especially characteristic body shape) are sufficient for the recognition of some insect taxa (e.g. ladybirds, ants, wasps). We tested the ability of wild‐caught great tits (Parus major) to discriminate between the identically coloured edible (roach – Blaptica dubia) and the inedible (firebug – Pyrrhocoris apterus) as prey according to subtle peripheral visual traits (shape of legs and antennae, body posture, and means of locomotion). Both prey species were offered either simultaneously or alternately. The ability of the birds to learn was tested by means of fourteen trial repetitions in two sessions. In general, great tits were not able to learn to discriminate between firebugs and roaches by subtle shape cues alone during the two sessions. However, multivariate analysis of individual bird behaviour showed that they adopted one of three different attitudes to the presented prey. Most of the birds never attacked any or always attacked both prey. In addition, a small proportion of the birds was able to discriminate between the two prey types and attacked only roaches. Nevertheless, firebugs survived most of the attacks, which suggests that in case of chemically protected prey, the evolution of conspicuous coloration is not always the best/only option.  相似文献   

9.
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.  相似文献   

10.
Synopsis Sixty-nine individuals of Plecodus straeleni were followed for 1 h each in the field with the aid of SCUBA, and time budgets, hunting techniques and prey selection were investigated in relation to sex and body size. The time of cruising in midwater and on the substrate amounted to 3/4 of the total time. The rest of the time was mainly spent on five hunting techniques named pursuing, waiting, mingling, aiming and stealthy approaching. Pursuing (following a flying prey at high speed) was frequently used by adults, especially males, mainly to attack the spiny eel Afromastacembelus moorii. Waiting (keeping motionless on the substrate, waiting for a known prey) was used by some adult females when they tried to steal eggs of the mouthbrooder Cyathopharynx furcifer on the bower and by adult males when they targeted an eel having hidden under a rock. Mingling (mixing in a school of prey to attack school members) was a favorite tactic of subadults to attack plankton-feeders. Aiming (directing the head to a target fish for a moment) commonly occurred when both adults and subadults attacked solitary fishes. In stealthy approaching, the scale-eater approached an unwary prey from behind or sideway. Attacks by these hunting techniques amounted to 97% of the total attacks, which were made on 38 cichlid species and 7 non-cichlid species. Hunting techniques and prey preference varied not only with sex and size but even among consexuals of similar sizes. A number of individuals successively attacked only one or a few prey species in 1 h. Food specialization among individuals was attributed to their learning of the behavior and life style of preferred prey species.  相似文献   

11.
Predators influence the evolution of colour pattern in prey species, yet how these selective forces might differ among predators is rarely considered. In particular, prey colour patterns that indicate unpalatability to some predator species may not carry the same signal for other predators. We test several hypotheses of selection on patterning between mammal predators and the polymorphic salamander Plethodon cinereus, which, under an avian visual system appears as a mimic of the toxic newt Notophthalmus viridescens. We fit each hypothesis against field observations of mammalian attacks on salamander clay replicas. We then develop a novel analytical procedure that enables the combination of multiple non‐exclusive models in a likelihood framework. We find that mammals do not follow any single hypothesis proposed, including the hypothesis of mimicry. Instead, mammals in this system use visual cues while foraging to avoid unfamiliar, novel prey and attack conspicuous prey. We propose that mammals may help to maintain colour pattern polymorphism within populations of P. cinereus by avoiding novel, unfamiliar colour morphs. Additionally, selective pressures from multiple predators and variation in predator communities among sites may contribute to the maintenance of colour polymorphism within and among localities in this salamander species.  相似文献   

12.
Prey preference in stoneflies: a comparative analysis of prey vulnerability   总被引:2,自引:0,他引:2  
Summary Laboratory feeding trials were conducted with the predaceous stonefly Hesperoperla pacifica and a number of mayfly and dipteran prey species to investigate the effects of predator size, and prey size and morphology, on the predator's success. Observations under dim red light permitted estimation of encounter rate (E/min), attack propensity (A/E), capture success (C/A) and handling time (HT). For prey of a particular species and size, HT decreased log-linearly with increasing predator size. Across all prey categories, HT increased log-linearly with increasing values of the ratio prey dry wt/predator dry wt, and differences among species appeared to be small. Overall, capture success was low, but C/A was higher for dipterans than for mayflies, especially with large H. pacifica. Predator size affected C/A when prey fell within a certain size range, but was not a detectable influence with very small or very large prey. Values of A/E of near 10% typified many predatorprey combinations; however, ephemerellid mayflies suffered markedly fewer attacks, and values of A/E up to 30% were obtained with some species-size combinations. We estimated benefit to the predator first as prey wt ingested per unit time (dry wt/HT), and second by mutliplying the former term by capture success. Values increased with increasing size of the predator, and inclusion of the C/A term indicated that predators would obtain greater reward from small relative to large prey, and from dipterans relative to mayflies. Howerver, there was little evidence that attacks were biased toward more profitable prey. We compare the relative contributions of E/min, A/E and C/A to prey choice, and discuss their applicability to predation events in nature.  相似文献   

13.
Summary Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.  相似文献   

14.
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.  相似文献   

15.
Foraging behaviors of the piscivorous cornetfish Fistularia commersonii were observed at shallow reefs in Kuchierabu-jima Island, southern Japan. This fish foraged on two types of prey fishes: one was reef fish that typically dwell on or near substrata (e.g., Tripterygiidae and Labridae), and the other was pelagic fish that shoal in the water column (e.g., Clupeidae and Carangidae). The prey sizes, prey types and foraging behaviors changed as the predator size increased. Prey sizes were largely limited by gape size of the cornetfish, and small predators consumed small prey. The small cornetfish (10–30 cm in total length) fed only on reef fish captured after stalking (where the fish slowly approaches the prey and then suddenly attacks). The stalking was done either solitarily or in foraging association with conspecifics. Large fish (30–120 cm) fed on both types of fishes by stalking and/or chasing (where the fish chases the prey using its high mobility and attacks), either solitarily or in foraging association with con- or heterospecifics. Thus, chasing was only performed by the large cornetfish against pelagic prey fish in associative foraging with other con- and heterospecific predators. As their body sizes increased, F. commersonii began to show a diversification of foraging behaviors, which was strongly related not only to the habitat types and anti-predatory behaviors of the prey fishes but also to associative foraging with con- or heterospecifics, which improves their foraging success.  相似文献   

16.

Background

Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families.

Methodology/Principal Findings

We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper''s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species.

Conclusions

Cooper''s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.  相似文献   

17.
Four piscine predator species were observed repeatedly attacking large (> 100,000) schools of flat-iron herring, Harengula thrissina. The predators could be categorized into two groups. Stalking predators (two species) were slow-moving, predominantly solitary hunters attacking from positions beneath the school. Attacks were directed at individual prey and the sequence of events was orient-approach-strike. Although the stalking species were seen most often and were responsible for the majority of the attacks, capture success was low. The remaining two species were fast-moving, pelagic hunters regularly occurring in groups of up to 8 individuals. These predators were extremely proficient at capturing prey, either by orienting on individuals (stragglers) or accelerating into the school and ramming their prey (impact attacks). Group size was positively associated with capture success, but not significantly so. Because stalking predators orient towards individual prey, they may suffer from the effect of confusion when attacking schooling prey. Use of the impact strategy, by comparison, may allow predators to overcome the confusion effect either by attacking prey already separated from the school, or by orienting towards aggregated prey rather than particular individuals.  相似文献   

18.
Summary To investigate the factors that influence prey utilization among predators with active prey, three series of experiments were performed in which Ural owls (Strix uralensis) searched for and attacked three prey species of wild mice, Microtus montebelli, Apodemus speciosus, and A. argenteus, in a large flight cage. Over the whole study, owls attacked mice about ten times a night. The number of attacks on each prey species did not differ from that predicted by a random attack model. M. montebelli was taken more than either Apodemus species. Prey utilization appears to be influenced by prey susceptibilities only and it is unlikely that prey selection by the owls affected prey utilization patterns. Under the experimental conditions, random attack is predicted by optimal foraging theory. However, random attack may be explained just as well by the inability of the owl to discriminate prey type. The owls, energy gain was adjusted not by alteration in the number of attacks on a prey species but rather by alteration in the capture success between experiments. Capture success increased in poor food conditions for the same prey species. This flexibility in capture success has not been considered in the assumptions of optimal foraging theory. In conventional optimal foraging theory, the probability of capture success is implicitly assumed as constant and unity. We suggest that this assumption is inadequate to understand the foraging behavior of owls.  相似文献   

19.
This study investigates how visual and tactile sensory information, as well as biomechanical effects due to differences in physical characteristics of the prey, influence feeding behavior in the frog Cyclorana novaehollandiae. Video motion analysis was used to quantify movement patterns produced when feeding on five prey types (termites, waxworms, crickets, mice and earthworms). Twelve kinematic variables differed significantly among prey types, and twelve variables were correlated with prey characteristics (including mass, length, height and velocity of movement). Results indicate that C.␣novaehollandiae uses a different strategy to capture each prey type. Visual assessment of prey characteristics appeared to be more important in modulating feeding behavior than tactile cues or biomechanical effects. We propose a hierarchical hypothesis of behavioral choice, in which decisions are based primarily on visual analysis of prey characteristics. In this model, the frogs first choose between jaw prehension and tongue prehension based on prey size. If they have chosen jaw prehension, they next choose between upward or downward head rotation based on length and height of the prey. If they have chosen tongue prehension, they next choose between behavior for fast and slow prey. Final decisions may be the result of behavioral fine tuning based on tactile feedback. Accepted: 5 August 1996  相似文献   

20.
The hawk owl genus Ninox is unique among raptorial birds in that it includes three species in which males are substantially larger than females. This is a reversal of the normal pattern observed in both diurnal and nocturnal raptorial birds in which females are larger. Interestingly, these three Ninox species also are both the largest of the 22 species in the genus and the only species that exhibit the striking behaviour of ‘prey holding’ in which large (> 600 g) mammalian or avian prey is captured at night and held with body parts intact, and draped below a roost for the entire day without being consumed. Because explanations of the evolution of large male size suggest that it results from competition among males, the adaptive significance of prey holding was studied in a wild population of powerful owl Ninox strenua. Prey holding is largely confined to breeding males and its occurrence varies significantly across the breeding cycle, being most frequent during incubation and brooding. The study did not clearly resolve whether prey holding is a form of food storage or territorial display; however, both functions can select for large male body size and therefore play a significant role in the evolution of nonreversed size dimorphism. Although female‐only incubation and brooding is typical of Ninox owls and other owl species, prey holding appears to occur only in the large Ninox species because of the unique combination of large body size, large prey size, separate sex roles, and obligate cavity nesting. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 284–292.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号