首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesion and movement ofAmoeba proteusare both dependent on the appropriate arrangement of the F-actin cytoskeleton and on the presence of the cell nucleus. In this study the F-actin organization was examined by routine FITC-phalloidin staining and confocal laser microscopy in intact amoebae and in their nucleated and anucleated fragments, at different levels of cell adherence to the substratum. In the adhering and migrating intact cells and nucleated cell fragments dot-like aggregates of F-actin are scattered over the ventral side at sites close to the substratum. In the case of de-adhesion of nucleated specimens this pattern disappears and F-actin is accumulated in the cell centre and/or dispersed in the cytoplasm. The same actin distribution, without ventral dots, is found in the anucleated fragments which usually fail to attach to the substratum. Re-adhesion of anucleated fragments, induced by a modified substratum or spontaneous, is accompanied by restoration of actin dots at the lower cell side. It is concluded that: (1) adhering specimens ofA. proteusdisplay the same dot-like actin pattern on the ventral cell side, as many metazoan motile cells; (2) organization or disorganization of this pattern may occur independently of the presence of the cell nucleus, under the control of cell adhesion to the substratum.  相似文献   

2.
Summary Anucleated fragments ofAmoeba proteus obtained by dissection and kept on an untreated glass surface fail to adhere to this substratum, lose motor polarity, and stop moving, at least for several hours. If they are transferred after the operation to a highly adhesive surface (polylysine-coated glass), they adhere to the substratum, although locomotion is not spontaneously restored. However, after exposure to a light-shade difference along their body they start moving towards the shaded area and continue locomotion as long as the photic stimulus is acting. Disorganisation of the F-actin cytoskeleton of anucleated fragments was observed on the untreated glass but reorganization on the polylysine-coated surface. The anucleated fragments can show transient recovery of slight spontaneous motor activity and react promptly to external stimuli after up to several days on untreated glass. These intermittent activity periods are enabled by reconstruction of F-actin cytoskeleton in the anucleated fragments during their temporary adhesion to the glass. It is concluded that the injurious effect of cell nucleus removal on the locomotor capacity of amoebae can be compensated by the simultaneous enhancement of cell adhesion and application of a stimulus restoring the motor polarity of the cell. The compensation is achieved by cytoskeletal reorganization.  相似文献   

3.
Summary Protein synthesis in egg follicles and blastoderm embryos ofDrosophila melanogaster has been studied by means of two-dimensional gel electrophoresis. Up to 400 polypeptide spots have been resolved on autoradiographs. Stage 10 follicles (for stages see King, 1970) were labelled in vitro for 10 to 60 min with35S-methionine and cut with tungsten needles into an anterior fragment containing the nurse cells and a posterior fragment containing the oocyte and follicle cells. The nurse cells were found to synthesize a complex pattern of proteins. At least two proteins were detected only in nurse cells but not in the oocyte even after a one hour labelling period. Nurse cells isolated from stages 9, 10 and 12 follicles were shown to synthesize stage specific patterns of proteins. Several proteins are synthesized in posterior fragments of stage 10 follicles but not in anterior fragments. These proteins are only found in follicle cells. No oocyte specific proteins have been detected. Striking differences between the protein patterns of anterior and posterior fragments persist until the nurse cells degenerate. In mature stage 14 follicles, labelled in vivo, no significant differences in the protein patterns of isolated anterior and posterior fragments could be detected; this may be due to technical limitations. At the blastoderm stage localized synthesis of specific proteins becomes detectable again. When blastoderm embryos, labelled in vivo, are cut with tungsten needles and the cells are isolated from anterior and posterior halves, differences become apparent. The pole cells located at the posterior pole are highly active in protein synthesis and contribute several specific proteins which are found exclusively in the posterior region of the embryo. In this study synthesis of specific proteins could only be demonstrated at those developmental stages which are characterized by the presence of different cell types within the egg chamber, while no differences were detected when stage 14 follicles were cut and anterior and posterior fragments analyzed separately. The differences in the pattern of protein synthesis by pole cells and blastoderm cells indicate that even the earliest stages of determination are reflected by marked changes at the biochemical level.  相似文献   

4.
Summary Mechanically dividing an insect egg into anterior and posterior fragments results in a segment gap (Sander 1976), a loss of non-terminal segments in the constricted region. By altering the stage and duration of constriction, we produced different types of egg fragments in the pea beetleCallosobruchus. The patterns formed by these fragments suggest the existence of interactions between anterior and posterior egg regions that influence segment patterning and placement. Segments in excess of the numbers expected on the basis of permanent constrictions were produced in fragments when: (1) the constriction was released before cellularization occurred and (2) in addition the complementary fragment degenerated. Apparently the degenerating fragment induced the formation of excess segments in the developing fragment. Differences in the time and extent of excess segment formation in anterior versus posterior fragments suggest an asymmetric distribution of prerequisites for segment formation. This conclusion is consistent with our finding that a partial reversal of segment sequence (double abdomen formation) can be induced only in posterior fragments by a degenerating fragment, but not in anterior fragments (see companion paper).The formation of excess segments shows that the segment gap observed after permanent separation cannot be due to non-specific damage, caused by the process of constriction as such, to the egg or to localized putative segment precursors.  相似文献   

5.
Dictyostelium amoebae can migrate in several different modes. We tested for correlations of the direction of cell locomotion with the relative positions of the nucleus and microtubule-organizing center (MTOC). Five cases were analyzed on electron micrographs with a microcomputer. Each mode of movement showed characteristic locations of the MTOC relative to the nucleus; however, they differed in the various cases. In randomly migrating interphase amoebae, the number of cells with the MTOC located behind the nucleus was twice as great as those with the MTOC located ahead of the nucleus. During chemotactic migration toward folic acid, cells with the MTOC behind the nucleus were more numerous, with a concomitant reduction of anterior MTOCs. When amoebae aggregated on agar plates, a posterior location of the MTOC was most strikingly favored, whereas in cells aggregating under submerged conditions, the MTOC was indifferently anterior or posterior to the nucleus. (It may be significant that EDTA-resistant cell-cell adhesion was fully expressed in the former cells, but weaker in the latter.) Finally, in the case of chemotactically migrating cells from dissociated pseudoplasmodia, which adhere by means of other molecules, the MTOC was consistently ahead of the nucleus. Thus the MTOC shows no necessary preferential position anterior or posterior to the nucleus; its position, rather, correlates with the type of migration and perhaps with the nature of cell-cell adhesion.  相似文献   

6.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

7.
TRITC-phalloidin or FITC-labeled F-actin of ghost muscle fibers was bound to tropomyosin and C-terminal recombinant fragments of caldesmon CaDH1 (residues 506-793) or CaDH2 (residues 683-767). After that the fibers were decorated with myosin subfragment 1. In the absence of caldesmon fragments, subfragment 1 interaction with F-actin caused changes in parameters of polarized fluorescence, that were typical of "strong" binding of myosin heads to F-actin and of the "switched on" conformational state of actin. CaDH1 inhibited, whereas CaDH2 activated the effect of subfragment 1. It is suggested that C-terminal part of caldesmon may modulate the transition of F-actin subunits from the "switched on" to the "switched off" state.  相似文献   

8.
During early embryogenesis of Caenorhabditis elegans the serial stem cell-like cleavages of the germ line cells P0-P3 generate a number of somatic founder cells with different developmental potentials. Observations on partial embryos show that in the first two of these unequal divisions in the germ line the somatic daughter cell comes to lie anterior to the new germ line cell. In the following two, however, the somatic daughter cell comes to lie posterior to the new germ line cell, suggesting a reversal of polarity in the germ line. By the use of a laser microbeam, egg fragments can be extruded from young embryos; the fragments often cleave like partial twins. Depending on whether the fragment is derived from the posterior region of the uncleaved zygote P0 or its daughter P1, the mirror image duplications that are generated are joined at their larger soma-like cells or at their smaller germ line-like cells, respectively. This result is best explained as a reversal of polarity taking place in the germ line cell P2. This notion is strengthened by the finding that partial embryos derived from the posterior region of the P2 cell in late interphase do not undergo stem cell-like (i.e., unequal) cleavages in contrast to those derived from P0 or P1. Finally, an apparent early cell-cell interaction is described which is inconsistent with the classical notion of "mosaic" nematode development: removal of the germline cell P2 results in an altered developmental pattern of its somatic sister cell EMS. A working model is presented linking reversal of polarity and cell-cell interaction and offers an explanation for the unique behavior of the EMS cell in normal development.  相似文献   

9.
Summary

This review deals with the question of how cells in the early embryo of the pea-beetle differentiate into a sequential pattern of segments. Anterior and posterior fragments of an egg have different options for development depending on whether they are exposed, before cellularization, to decaying ooplasm in the complementary fragment. Without such exposure all fragments produce fewer segments than corresponding fragments obtained at cellularization. With exposure a fraction of anterior and posterior fragments produces considerably more segments than corresponding fragments obtained at cellularization. In addition, posterior fragments are uniquely different from anterior ones in that they also produce reversal of segment sequence which can be restricted to longitudinal strips of the larval cuticle.

The difference in reaction to decaying ooplasm between anterior and posterior fragments suggests an asymmetry in the control of metamerization. Lateral inhibition by an asymmetric gradient of a diffusible morphogen can describe these observations [18] except for the restriction of reversal to longitudinal strips. The latter requires either that morphogen transport be polarized, possibly by a voltage gradient in the egg, or that the interpretation of cell position is polarized. The induction of double abdomens with UV-light and RNase suggests that RNA is part of the control mechanism. This and strip-restricted reversal are features shared by eggs of Coleoptera and Diptera.  相似文献   

10.
The development of the segment pattern in Smittia embryos can be manipulated experimentally. Centrifugation during intravitelline cleavage leads to a mirror image duplication of most of the head in the absence of abdominal segments (“double cephalons”). Conversely, mirror image duplications of abdominal segments in the absence of head and thorax (“double abdomens”) can be generated by UV-irradiation of the anterior pole before blastoderm formation. By subsequent exposure to blue light, UV-irradiated embryos can be reprogrammed for normal development (photoreversal). We have characterized an “anterior indicator” protein (designated AI1; Mr ? 35,000; IEP ? 4.9). Its synthesis was restricted to anterior fragments of embryos during a late blastoderm stage (BlVI). This protein was synthesized, however, in both anterior and posterior fragments of prospective double cephalons. Conversely, this protein was synthesized neither in anterior nor in posterior fragments of UV-induced double abdomens. Upon photoreversal, the protein was synthesized again in anterior fragments. Thus, synthesis of this protein in a given fragment always indicated development of head and thorax there. Likewise, we have characterized a “posterior indicator protein” (designated PI1, Mr ? 50,000, IEP ? 5.5). Its synthesis during early blastoderm stages (BlI and BlII) was restricted to posterior fragments but not to pole cells in normal embryos. In UV-induced double abdomens, PII was synthesized in both anterior and posterior fragments at stage BlII. Photoreversal again led to restriction of PII synthesis to posterior fragments. Thus, the synthesis of PII in a given fragment at stage BlII always foreshadowed the formation of an abdomen several hours before this can be discerned morphologically. The synthesis of two other proteins (designated a1 and p1) was also restricted, during certain blastoderm stages, to anterior or posterior fragments, respectively. However, UV-irradiation or centrifugation had little or no effect on the synthesis of these proteins. Conversely, programming embryos for double abdomen development by UV-irradiation caused a set of reproducible, and mostly photoreversible, changes in the pattern of proteins synthesized in anterior embryonic fragments. However, the synthesis of most of the affected proteins was not region-specific in normal embryos.  相似文献   

11.
Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid ( approximately 250-300 nm/s) jerking and slow ( approximately 50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings.  相似文献   

12.
Background: Directional cell motility implies the presence of a steering mechanism and a functional asymmetry between the front and rear of the cell. How this functional asymmetry arises and is maintained during cell locomotion is, however, unclear. Lamellar fragments of fish epidermal keratocytes, which lack nuclei, microtubules and most organelles, present a simplified, perhaps minimal, system for analyzing this problem because they consist of little other than the motile machinery enclosed by a membrane and yet can move with remarkable speed and persistence.Results: We have produced two types of cellular fragments: discoid stationary fragments and polarized fragments undergoing locomotion. The organization and dynamics of the actin–myosin II system were isotropic in stationary fragments and anisotropic in the moving fragments. To investigate whether the creation of asymmetry could result in locomotion, a transient mechanical stimulus was applied to stationary fragments. The stimulus induced localized contraction and the formation of an actin–myosin II bundle at one edge of the fragment. Remarkably, stimulated fragments started to undergo locomotion and the locomotion and associated anisotropic organization of the actin–myosin II system were sustained after withdrawal of the stimulus.Conclusions: We propose a model in which lamellar cytoplasm is considered a dynamically bistable system capable of existing in a non-polarized or polarized state and interconvertible by mechanical stimulus. The model explains how the anisotropic organization of the lamellum is maintained in the process of locomotion. Polarized locomotion is sustained through a positive-feedback loop intrinsic to the actin–myosin II machinery: anisotropic organization of the machinery drives translocation, which then reinforces the asymmetry of the machinery, favoring further translocation.  相似文献   

13.
Locomoting metazoan cells usually form lamellipodia at the leading front and it is widely accepted that lamellipodia are required for locomotion. In this case, suppression of lamellipodia must stop locomotion. However, the experiments show that lamellipodia are redundant for locomotion of Walker carcinosarcoma cells. Low latrunculin A concentrations (10(-7) M) transform polarised locomoting cells with lamellipodia into cells without morphologically recognisable protrusions showing an increased speed of locomotion and a reduced amount of cellular F-actin. Whereas untreated cells show a fairly linear distribution of F-actin along the plasma membrane, cells lacking morphologically recognizable protrusions at the front show modifications at the front consisting in an irregular distribution of F-actin with formation of small or large patches of F-actin alternating with small or large gaps in the F-actin layer. This is associated with a reduced resistance to deformation pressure at the front of the cell. High concentrations of latrunculin A (>10(-7) M) compromising contraction at the rear stop locomotion, suggesting that cortical contraction is important for locomotion to occur in these cells. The results are consistent with the view that actin polymerization is important for formation of lamellipodia but they are not compatible with the view that lamellipodia are essential for locomotion of Walker carcinosarcoma cells. A unifying hypothesis for the formation of different types of protrusions is proposed.  相似文献   

14.
After removal of the nasal or the temporal two-thirds of the embryonic (stage 32) eye, the remaining one-third sized fragment undergoes wound healing and then, in most cases, regenerates to form a new eye. Using gross anatomy and histology techniques, we categorized eye fragments into three healing mode categories over the first 24 hr after surgery (stage 37-38). Representative animals were reared through metamorphosis and their visuotectal projections were assayed using standard electrophysiology techniques. In the "rounded-up" healing mode, the cut edges of the fragment pinch to close the wound; retinal cell type layers (pigmented retinal epithelium (pre), photoreceptors, interneurons, ganglion cells) and a lens are present by 24 hr postsurgery. No extraneous or disorganized cells are present either internal or external to the fragments. These fragments regenerated to form normal projections 83% of the time and pattern duplicated projections only 17% of the time. In the "intermediate" healing mode, wound closure is not complete by 24 hr post surgery and groups of disorganized cells are present in the fragment and amassed between the healing cut edges. These fragments formed pattern duplicated projections 72% of the time. In the tongue healing mode, an ectopic mass of cells, contiguous with the main body of the fragment, forms a supernumerary retina in the region of the ablation. At 24 hr post surgery, the cells of the main body fragment form retinal layers; the cells of the tongue, excluding the presence of differentiated pre cells, remain undifferentiated, resembling ciliary margin. The cut edges of the main body fragment eventually fuse with the tongue to form a single eyeball. Tongue fragments formed pattern duplicated projections 100% of the time. In addition, pattern duplicated points derived from nasal fragments appeared most often in the posterior region of the tectum, the normal site of innervation of the nasal retina. This differed significantly from temporal fragment derived duplicated points which appeared more often in the front of the tectum, the normal site of innervation by temporal retina. Thus, the specificity of pattern duplicated innervation is related to the positional values remaining in the fragment after partial retinal ablation. The data indicate that cell movements during healing, whether overt as in the tongue healing mode, or remaining internal to the fragment as in the intermediate healing mode, are intimately correlated with pattern forming mechanisms which underlie pathological visuotectal duplication.  相似文献   

15.
Summary Peripheral tissue of the imaginal wing disc gives rise to the proximal mesothoracic structures of the adult. Pieces of peripheral tissue, which have no regenerative capacity when cultured as intact fragments, are capable of distal outgrowth (regeneration) after dissociation and reaggregation. This ability depends on the region of the disc periphery from which the fragment is taken. Extensive distal outgrowth occurs in reaggreages of a fragment containing equal proportions of tissue from anterior and posterior developmental compartments. The extent of outgrowth decreases as the proportion of posterior tissue is reduced, so that a fragment containing only anterior tissue shows no regeneration after dissociation. Limited distal outgrowth occurs in reaggregates of a wholly posterior fragment, but the regenerative capacity is increased greatly when a small amount of anterior tissue is included. It is concluded that distal outgrowth in the wing disc requires an interaction between cells of the anterior and posterior compartments.  相似文献   

16.
Myosin (opaque myosin) isolated from the opaque portion of scallop smooth muscle, a catch muscle, was subjected to limited digestion by trypsin during the steady-state ATPase reaction. The 200-kDa heavy chain of opaque myosin was cleaved into 125- and 74-kDa fragments. The proteolytic rate in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. The results suggest that the steady-state intermediate of opaque myosin ATPase in the absence of Ca2+ is EADP, which is consistent with the previous results based on the difference UV-absorption spectrum (Takahashi, M., Sohma, H., & Morita, F. (1988) J. Biochem. 104, 102-107). In the presence of F-actin, the proteolytic rates were decreased, but the digestive patterns by trypsin were similar to those of myosin alone. Even in the presence of F-actin, the proteolytic rate during the ATPase reaction in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. In addition, there was another trypsin-susceptible site which is probably located at 18 kDa from the N-terminal of the heavy chain. The site in the absence of Ca2+ was hardly cleaved when ATP or ADP was present. Similar tendencies were observed even in the presence of F-actin. These findings suggest that the intermediate of opaque myosin ATPase at the steady state in the absence of Ca2+ is EADP even in the presence of F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Actin is a rather uncommitted protein with a high degree of structural plasticity: it can adopt a variety of structural states, depending on the specific ionic conditions or the interaction with ligand proteins. These interactions lock actin into a distinct conformation, which specifies the oligomeric or polymeric form it can assume. The interplay between monomeric, oligomeric and polymeric forms is used by the cell to execute an enormous variety of motility processes, such as lamellipodium formation during locomotion or intracellular transport of vesicles. In these cytoplasmic events, monomeric G-actin and filamentous F-actin are the prevalent forms. However, there might be other structural states of actin in cells that have so far not received the attention they deserve. Here, we propose that specific, "unconventional" actin conformations might contribute especially to the multitude of functions executed by actin in the nucleus. We present evidence for the existence of different forms of nuclear actin, taken from studies with selected antibodies.  相似文献   

18.
Reports from several laboratories suggest that neutrophils arrested during locomotion preferentially bind immune complexes at the front of the cell. Such asymmetry of binding has been interpreted as indicating an active modulation of phagocytic receptors to the anterior of the cell. To investigate this further, we have used digital analysis of fluorescence images to determine the binding patterns of mAbs directed against the Fc receptors, the receptors for the C3bi fragment of C3, and a neutrophil-specific antigen. We found that all three proteins are distributed nearly identically along the length of migrating neutrophils, and their distribution very closely parallels the anterior to posterior distribution of the plasma membrane. The use of mAbs offered an important advantage in that the binding of antireceptor antibodies, unlike the binding of ligands, should be independent of potential changes in the affinity of the receptors. We conclude that the anterior distribution of the phagocytic receptors in the plasma membrane of locomoting neutrophils parallels the overall increase in membrane area at the front of a migrating cell and that specific translocation of phagocytic receptors does not occur.  相似文献   

19.
The interaction of gamma-actinin and actin was investigated under various conditions. It has been shown that gamma-actinin affects the G-F transformation of actin, causing an increase in the number of actin monomers required to form a nucleus in the initial step of polymerization. Sonicated fragments of F-actin and heavy meromyosin caused the immediate polymerization of actin under the influence of gamma-actinin. Therefore, it can be concluded that gamma-actinin inhibits the nucleation step of G-F transformation. Actin filaments which were formed in the presence of gamma-actinin (F-actin) were shown to possess certain characteristic properties when compared with control F-actin. These were as follows: F-actin solution had a high critical concentration; F-actin showed a high rate of depolymerization; the flow birefringence of F-actin decreased with time upon incubation in the absence of free ATP; finally, F-actin was demonstrated to have ATP-splitting activity. These dynamic features of F-actin were accounted for in terms of an increase in the rate constant of depolymerization in F-actin under the influence of gamma-actinin.  相似文献   

20.
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号