首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyamines putrescine, spermidine and spermine have been implicated in the regulation of proliferation and differentiation. The present study has monitored the effects of 5′-methylthioadenosine, the metabolic product of spermidine and spermine synthesis, on the appearance of a differentiated murine erythroleukemia cell phenotype. The results demonstrate that increasing concentrations of 5′-methylthioadenosine (1 × 10?6 to 5 × 10?4M) progressively inhibit murine erythroleukemia cell heme synthesis and hemoglobin production. The results also demonstrate that this inhibition of differentiation is not related to depletion of intracellular spermidine or cytostasis. Since 5′-methylthioadenosine is also a known inhibitor of DNA methylation, this naturally occurring nucleoside may be an intermediate involved in both murine erythroleukemia cell proliferation and differentiation.  相似文献   

2.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

3.
Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis.  相似文献   

4.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of tissues and cell types. This investigation explores the response of murine embryonic palate mesenchymal (MEPM) cells to epidermal growth factor (EGF) in terms of biosynthesis of putrescine and its transport across the plasma membrane and tests the hypothesis that polyamine transport can serve as an alternative mechanism (other than biosynthesis) for elevating intracellular polyamines during stimulation of MEPM cellular proliferation. MEPM cells treated with EGF were stimulated to proliferate and showed a dose- and time-dependent stimulation of ornithine decarboxylase (ODC) which was maximal at 4-6 hours. EGF also stimulated the initial rate of putrescine transport in a dose- and time-dependent manner. This stimulation was found to be maximal 3 hours after treatment and specific for the putrescine transport system. The kinetic parameters of putrescine transport shifted from 2.52 microM (Km) and 23.6 nmol/mg protein/15 minutes (Vmax) in nonstimulated cells to 4.48 microM (Km) and 39.8 nmol/mg protein/15 minutes (Vmax) in EGF-treated cells. This kinetic shift did not require de novo protein or RNA synthesis, as cycloheximide (10 micrograms/ml) and actinomycin D (50 micrograms/ml) had little effect on the ability of EGF to stimulate the initial rate of putrescine uptake. The rate of transport, however, was found to be inversely related to cell density. The addition of exogenous putrescine concomitantly with EGF blocked the induction of ODC, while in the presence of difluoromethylornithine (DFMO) (irreversible inhibitor of ODC) the initial rate of putrescine transport remained elevated throughout the time course studied. This stimulation of putrescine uptake caused by polyamine deprivation was reversed by exogenous putrescine and Ca++ while alpha-aminoisobutyric acid (AIB) further stimulated the rate of uptake. EGF's ability to stimulate cellular DNA synthesis was inhibited by DFMO. If DFMO-treated cells were stimulated with EGF in the presence of exogenous putrescine, this stimulatory effect was preserved. These studies indicate that the rate of polyamine transportation is highly responsive to a signal which initiates biosynthesis of polyamines. Further, this transportation system provides a compensatory mechanism allowing the cell to increase intracellular levels of polyamines when environmental conditions inhibit biosynthesis or when polyamines are abundant.  相似文献   

5.
Terminal deoxynucleotidyl transferase (Tdt), a unique DNA polymerase found only in lymphoid cells, may be involved in the generation of immunoglobulin-combining site diversity. To study the actual metabolic function of the enzyme, we developed a system in which Tdt expression is induced under defined culture conditions. We found that pharmacologic agents that raise intracellular cyclic AMP levels, such as caffeine, induce a three- to 10-fold increase in enzyme biosynthesis rate and activity. This phenomenon is observed only in pre-B cell lines of human or murine origin.  相似文献   

6.
A trimodal change in the cellular levels of three major polyamines: spermidine, N,N′-bis(3-aminopropyl)-1, 3-propanediamine (BAP) and 3,3′-diaminodipropylamine (DAD) was observed during two successive cell cycles in synchronously dividing cultures of the algal flagellate, Euglena gracilis Z photoautotrophically grown in a 24-h light-dark cycle. The intracellular levels of these three polyamines decreased as cells divided and then were enhanced as cells exited the G1 phase and proceeded through the S and G2 phases. Spermidine, BAP and DAD concentrations increased about 2.5-fold during the S phase. Putrescine and 1,3-diaminopropane levels did not vary significantly. One peak of polyamine synthesis occurred in the G1 phase prior to DNA synthesis, followed by a second more important peak during the S-G2 phases before cell division; both peaks were observed during the light period. A third minor peak was observed during the pre-G1 (or G0) phase in the dark period after mitosis had been completed. In contrast, when the cells attained the “stationary” phase of growth, there was no significant increase in the content of polyamines during the light period although spermidine and BAP increased slightly twice during the dark period (putrescine and 1,3-diaminopropane and DAD levels remained almost constant). To ascertain whether the synthesis of polyamines was merely a direct effect of the photoperiod, parallel experiments with synchronous cultures were carried out in the presence and absence of 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, a photosynthetic inhibitor. Although a slight decrease in the concentration of polyamines was observed, the three maxima of polyamines synthesis were observed as in normal cultures. These results clearly suggest that polyamine biosynthesis is closely related to DNA replication and cell division in Euglena cells.  相似文献   

7.
Regulation of polyamine biosynthesis during growth and differentation of Euglena gracilis was investigated. Increased activity of l-ornithine decarboxylase (EC 4.1.1.17), the enzyme which catalyzes the initial step in polyamine synthesis in Euglena, and accumulation of polyamines were observed prior to DNA replication in synchronous cultures of heterotropically or photoautotrophically grown cells. In photoatotrophic cells three maxima of polyamine synthesis were observed during the light period of the cell cycle. The transition from quiescence of active growth was accompanied in heterotrophic Euglena by a very large stimulation of ornithine decaboxylase activity and polyamine synthesis; the decrease in growth potential of these cells was correlated with a decrease in polyamine levels. In contrast, differentiation of Euglena, i.e., a shift from heterotrophic to photoautotrophic mode of living in the absence of division, led only to a minor stimulation of polyamine biosynthesis. α-Methylornithine, an inhibitor of ornithine decarboxylase, blocked the growth of heterotrophic Euglena, and depletion of intracellular polyamines decreased the differentiation rate. Both events could be reversed only by addition of putrescine to the growth medium. This study suggests that Euglena requires a minimal intracellular level of polyamines to grow and differentiate under optimal conditions. This requirement seems to be more stringent for cell division.  相似文献   

8.
Polyamines are polycationic molecules essential for cell growth and differentiation. Recent work has focused on cell polyamine-transport systems as a way to regulate intracellular polyamine levels. In this study, we demonstrate the presence of two different active transporters for putrescine and spermidine in a rat tumoral cell line (AR4-2J). The first has a Km of 3.1 microM and a Vmax of 3.7 pmol/15 min per micrograms of DNA for putrescine and the second a Km of 0.42 microM and a Vmax of 4.7 pmol/15 min per micrograms of DNA for spermidine. Competition studies performed between the polyamines confirm the difference between these two carriers; one has an equal affinity for the three main polyamines, and the other has a lower affinity for putrescine. Amino acids do not share this transport system, which is Na(+)-independent. Choline chloride inhibits selectively and in a dose-responsive manner the uptake of putrescine without affecting that of spermidine. These data demonstrate that AR4-2J cells possess two polyamine transporters; one is specific for aminopropyl groups (spermidine and spermine), and the other is choline-sensitive, but cannot discriminate between aminobutyl (putrescine) and aminopropyl groups.  相似文献   

9.
Following growth stimulation of rat embryo fibroblast (REF) cells previously arrested in G1 by serum deprivation, there occurs a large increase in the synthesis of the polyamines putrescine, spermidine and spermine. Methylglyoxal bis(guanylhydrazone) (MGBG), a potent inhibitor of S-adenosylmethionine decarboxylase can block the accumulation of both spermidine and spermine over a period of several days. Under such conditions REF cells treated with MGBG will approximately double in number and then become growth-arrested again predominantly in the G1 phase of the cell cycle. REF cells therefore appear to contain sufficient spermidine and spermine to progress through one cell cycle before the intracellular levels of these polyamines is reduced sufficiently to arrest growth in the absence of continued polyamine synthesis. Limitation of intracellular polyamine levels is therefore not the mechanism by which deprivation of serum growth factors arrests cell growth. While continued growth is nevertheless dependent on polyamine synthesis, this cell type is capable of limited proliferation in its absence. Addition of spermidine or spermine to MGBG-arrested REF cells results in a rapid resumption of proliferation demonstrating that either polyamine can fulfill the role played by these polyamines in the growth process. Low levels of spermidine and spermine therefore arrest this cell type at a resriction point in G1 at which it is decided whether the intracellular level of these polyamines is sufficiently high to enable a cell to enter into and complete a new cell cycle. This polyamine-sensitive restriction point is considered to be analogous to the restriction point(s) in G1 at which serum and nutrient limitation act.  相似文献   

10.
Growth stimulation of either fetal rat liver cells or rat embryo fibroblasts in culture results in considerable increases in intracellular polyamine levels as cells proceed through the cell cycle. Treatment of such cell cultures with appropriate levels of two inhibitors of polyamine synthesis, namely α-hydrazino ornithine and methylglyoxal bis(guanylhydrazone), can essentially completely block these increases in cellular polyamine content. Under such conditions, where the elevation in intracellular polyamine content is prevented, cell cultures are nevertheless able to initiate DNA synthesis and subsequently synthesize DNA at rates comparable to untreated control cultures that have been growth-stimulated. These two cell types therefore contain sufficient polyamines when in a resting state (G1) to enable them to enter from G1 into S phase and traverse S phase at normal rates in the absence of further polyamine synthesis. The recruitment of cells into the first cell cycle, through serum stimulation of growth, therefore appears not to be mediated or regulated by the increases in intracellular levels of polyamines that occurs under these conditions. Conversely, the arrest of growth of these cell types resulting from serum deprivation is not mediated by a limitation of intracellular polyamine content.  相似文献   

11.
Polyamines and cancer: Minireview article   总被引:4,自引:0,他引:4  
Bachrach U 《Amino acids》2004,26(4):307-309
Summary. The naturally occurring polyamines, spermine, spermidine and the diamine putrescine are widespread in nature. They have been implicated in growth and differentiation processes. Polyamines accumulate in cancerous tissues and their concentration is elevated in body fluids of cancer patients. Assays of urinary and blood polyamines have been used to detect cancer and to determine the success of therapy. Drugs which inhibit the synthesis of polyamines can prevent cancer and may also be used for therapeutic purposes. Ornithine decarboxylase, which catalyzes the rate limiting step in polyamine synthesis, can serve as a marker of proliferation. Recently, a new in vitro chemosensitivity test, based on the disappearance of ornithine decarboxylase in drug-treated cancer cells has been developed. The increasing interest in polyamines and their physiological functions may lead to a more extensive application of these compounds or their derivatives in cancer diagnosis and treatment.  相似文献   

12.
Withdrawal of interleukin-7 from cultured murine preB lymphocytes induces cell differentiation including V(D)J immunoglobulin gene rearrangements and cell cycle arrest. Advanced steps of the V(D)J recombination reaction involve processing of coding ends by several largely unidentified DNA metabolic enzymes. We have analyzed expression and activity of DNA polymerases alpha, beta, delta and epsilon, proliferating cell nuclear antigen (PCNA), topoisomerases I and II, terminal deoxynucleotidyl transferase (TdT) and DNA ligases I, III and IV upon induction of preB cell differentiation. Despite the immediate arrest of cell proliferation, DNA polymerase delta protein levels remained unchanged for approximately 2 days and its activity was up-regulated several-fold, while PCNA was continuously present. Activity of DNA polymerases alpha,beta and epsilon decreased. Expression and activity of DNA ligase I were drastically reduced, while those of DNA ligases III and IV remained virtually constant. No changes in DNA topoisomerases I or II expression and activity occurred and TdT expression was moderately increased early after induction. Our results render DNA polymerase delta a likely candidate acting in DNA synthesis related to V(D)J recombination in lymphocytes.  相似文献   

13.
Molecular genetics of polyamine synthesis in eukaryotic cells   总被引:39,自引:0,他引:39  
The polyamines putrescine, spermidine and spermine are important cellular constituents involved in the regulation of cell growth and differentiation. Their intracellular levels are regulated by a multitude of mechanisms affecting their synthesis, degradation, uptake and excretion. As a result of the application of molecular biology techniques, some of these mechanisms are presently being unravelled, and are providing a basis for the rational development of novel agents effective against proliferative disorders and various parasitic diseases.  相似文献   

14.
15.
Although the precise intracellular function(s) of the polyamines remain incompletely defined, a myraid of evidence now shows that the polyamines must accumulate or be maintained at a specific intracellular concentration in order for all mammalian cells to grow or divide. The initial step in polyamine biosynthesis normally involves the decarboxylation of ornithine by the enzyme ornithine decarboxylase (ODCase E.C. 4.1.1.17) to yield putrescine. Increases in the steady-state level of intracellular ornithine have been reported to markedly alter the accumulation of the polyamines following stimulation of Reuber H35 Hepatoma cells with 12-O-tetradecanoylphorbol-beta-acetate (TPA) in the presence of serum (Wu and Byus: (Biochem. Biophys. Acta 804:89-99, 1984); Wu et al.: (Cancer Res. 41:3384-3391, 1981). We wished to determine whether or not incubation of H35 hepatoma cells with exogenous ornithine would result in a stimulation of DNA synthesis following treatment with the mitogens TPA and insulin. For these studies, H35 cells were maintained under serum-free conditions for 2-3 days in order to obtain synchronous cultures suitable for analysis of the level of DNA synthesis. Cultures treated in this manner were highly viable, maintained similar growth rates, and possessed the equivalent levels of intracellular ornithine and polyamines as the serum-containing cultures. Arginine levels, however, were approximately twofold higher following culture under serum-restricted conditions for 3 days. The addition of exogenous ornithine (0.5 mM) was accompanied by a 4-5-fold increase in intracellular steady-state ornithine levels and by a 6-8-fold increase in the presence of TPA and ornithine. In a manner identical to the serum-containing cultures (Wu and Byus (1984] the addition of TPA and exogenous ornithine to the serum-free cells caused a dose-dependent increase in intracellular putrescine (up to 5-fold) and a concomitant decrease in ODC activity in comparison to stimulation with TPA alone. The addition of TPA led to a 3-5-fold increase in the incorporation of tritiated thymidine into DNA. In the presence of exogenous ornithine, TPA-induced DNA synthesis was further stimulated more than twofold in a dose-dependent manner. Insulin (10(-10)-10(-8) M) proved to be more efficacious as a mitogen in the H35 cells and led to greater stimulation of DNA synthesis than TPA. Insulin alone also resulted in a higher steady-state level of ornithine and putrescine in comparison with TPA alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Nuclear matrix extracted from KM-3, a human pre-B leukemia cell line, appears to have a site of linkage for terminal deoxynucleotidyl transferase (TdT). The immunocytochemical analysis of the distribution of TdT using a rabbit polyclonal antibody which recognizes human terminal transferase, shows that the nuclear framework of these cells contains sites of immunoreactivity that appear uniformly distributed on the matrix fibres, while the nucleolar region is unreactive. This evidence points out the possibility that TdT could reside in the proteinaceous scaffold of the nucleus defined as nuclear matrix, thus strengthening the evidence for the metabolic and regulatory roles ascribed to this nuclear framework.  相似文献   

17.
Nuclear matrix extracted from KM-3, a human pre-B leukemia cell line, appears to have a site of linkage for terminal deoxynucleotidyl transferase (TdT). The immunocytochemical analysis of the distribution of TdT using a rabbit polyclonal antibody which recognizes human terminal transferase, shows that the nuclear framework of these cells contains sites of immunoreactivity that appear uniformly distributed on the matrix fibres, while the nucleolar region is unreactive. This evidence points out the possibility that TdT could reside in the proteinaceous scaffold of the nucleus defined as nuclear matrix, thus strengthening the evidence for the metabolic and regulatory roles ascribed to this nuclear framework.  相似文献   

18.
Influence of DL-alpha-difluoromethylornithine (DFMO) treatment on the growth kinetics, labelling index, extra- and intracellular polyamine and nucleotide concentrations was monitored in cultured P388 leukemia cells. A substantial decrease of cell proliferation was observed when the cells were continuously treated with 1-5 mM DFMO. Depletion of cellular polyamines, mostly of putrescine and spermidine, was seen with a concomitant but delayed increase of spermidine and spermine levels in the culture medium. Changes of DNA content and of labelling index of untreated and treated cells seem to indicate that DFMO arrested cells in G1/S transition. The results presented here provide additional in vitro evidence on the characteristic changes in the metabolic imbalance of ornithine in tumor cells induced by DFMO via inhibition of ornithine decarboxylase and ornithine carbamoyl transferase activities.  相似文献   

19.
Abstract. Extracellular matrices, like collagen layers, play an important role in preventing dedifferentiation of hepatocytes in long-term culture experiments. It has also been shown that polyamines are crucial for cell growth and liver differentiation – regeneration. Primary cultured hepatocytes with their low mitotic activity might be a valuable tool in studying the role of polyamines in differentiation. Here, our goal was to investigate whether an extracellular cell culture matrix can influence intracellular polyamine levels in human hepatocytes during long-term culture. Primary human hepatocytes were isolated from surgical tissue resections and were maintained either in single collagen (SG) or double collagen gel (DG) layer (sandwich) culture systems. Cell viability and function were examined and intracellular polyamine levels were measured using a highly sensitive high performance liquid chromatography (HPLC) method. Hepatocytes showed high viability in both culture systems used, but albumin secretion was diminished in SG cultured hepatocytes after 14 days. In general, total intracellular polyamine levels of hepatocytes decreased markedly in both SG and DG within the first days of culture, but remained constant until day 21 with a SG/DG ratio of about 1.4. Individual polyamines levels were dependent on the culture time and system, where spermine decreased and putrescine increased in both SG and DG over time (day 14), but spermidine increased only in DG. Our results suggest that polyamine levels, in particular putrescine, might be important regulators of hepatocyte specific function in vitro and therefore serve as a marker of differentiation for cultivated human hepatocytes.  相似文献   

20.
Natural polyamines, i.e., putrescine, spermidine, and spermine, are ubiquitous molecules essential for cell proliferation and differentiation. In the present study, the effect of polyamines on primary cultures of bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and a human melanoma cell line was examined. While in the absence of fetal calf serum (FCS) polyamines had no effect on viability, in the presence of FCS spermidine and spermine, at concentrations close to physiologic levels, induced a dose-dependent cell death, whereas putrescine was ineffective. RASMCs were significantly more sensitive than other cells. FACS analysis, oligo-nucleosome ELISA, Hoechst nuclear staining, and Annexin V-FITC quantification showed that cell death was likely due to apoptosis. Cells exposed to spermidine showed a marked increase of intracellular transglutaminase (TGase) activity ( approximately 30-fold over control). Inhibitors of polyamine oxidation or inhibitors of TGase activity prevented polyamine-induced apoptosis. Moreover, tissue TGase overexpression significantly increased cell sensitivity to polyamine, suggesting that this effect is likely related to enhanced intracellular TGase activity. These data indicate that polyamines may modulate cell viability through a novel TGase-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号