首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca2+-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.  相似文献   

2.
Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca2+ sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca2+-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca2+/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (KD = 500 nm) and syntaxin 1 (KD = 2 μm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca2+ sensors act antagonistically in SNARE-mediated fusion.  相似文献   

3.
In the study of membrane fusion, which is the terminal stage of exocytosis, we used a simplified model consisting of homotypic membranes of isolated synaptic vesicles (SV) obtained from the synaptosomal fraction of rat brain tissue. It was shown that fusion of SV develops in the presence of cytoplasmic proteins and 10–7 to 10–5 M Ca2+ ions. This conclusion was made based on changes in the intensity of fluorescence of a probe, R18. Calcium ions were found to be the most effective activators of the membrane fusion when the effects of bivalent cations, Ca2+, Sr2+, and Ba2+, were compared. ATP induced membrane fusion both in the presence and in the absence of Ca2+, and the effects of ATP and Ca2+ were additive. These findings allow us to believe that there are factors in the system containing SV and soluble proteins of synaptosomes, which initiate fusion of the membranes under the influence of not only Ca2+ but also ATP. The intensity of Ca2+-dependent fusion of SV dropped after trypsin treatment, i.e., proteolysis resulted in modulation of the sensitivity of vesicular proteins and/or a change in their capability of evoking membrane fusion. Monoclonal antibodies against synaptotagmin and synaptobrevin inhibited fusion of SV, but only partly. Our results support the concept that Ca2+-regulated membrane fusion is possible without the involvement of the entire SNARE complex.Neirofiziologiya/Neurophysiology, Vol. 36, No. 4, pp. 272–280, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

4.
Synaptotagmin I is the major Ca2+ sensor for membrane fusion during neurotransmitter release. The cytoplasmic domain of synaptotagmin consists of two C2 domains, C2A and C2B. On binding Ca2+, the tips of the two C2 domains rapidly and synchronously penetrate lipid bilayers. We investigated the forces of interaction between synaptotagmin and lipid bilayers using single-molecule force spectroscopy. Glutathione-S-transferase-tagged proteins were attached to an atomic force microscope cantilever via a glutathione-derivatized polyethylene glycol linker. With wild-type C2AB, the force profile for a bilayer containing phosphatidylserine had both Ca2+-dependent and Ca2+-independent components. No force was detected when the bilayer lacked phosphatidylserine, even in the presence of Ca2+. The binding characteristics of C2A and C2B indicated that the two C2 domains cooperate in binding synaptotagmin to the bilayer, and that the relatively weak Ca2+-independent force depends only on C2A. When the lysine residues K189-192 and K326, 327 were mutated to alanine, the strong Ca2+-dependent binding interaction was either absent or greatly reduced. We conclude that synaptotagmin binds to the bilayer via C2A even in absence of Ca2+, and also that positively charged regions of both C2A and C2B are essential for the strong Ca2+-dependent binding of synaptotagmin to the bilayer.  相似文献   

5.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

6.
Neurotransmitter release from synaptic vesicles is triggered by voltage-gated calcium influx through P/Q-type or N-type calcium channels. Purification of N-type channels from rat brain synaptosomes initially suggested molecular interactions between calcium channels and two key proteins implicated in exocytosis: synaptotagmin I and syntaxin 1. Co-immunoprecipitation experiments were consistent with the hypothesis that both N- and P/Q-type calcium channels, but not L-type channels, are associated with the 7S complex containing syntaxin 1, SNAP-25, VAMP and synaptotagmin I or II. Immunofluorescence confocal microscopy at the frog neuromuscular junction confirmed that calcium channels, syntaxin 1 and SNAP-25 are co-localized at active zones of the presynaptic plasma membrane where transmitter release occurs. Experiments with recombinant proteins were performed to map synaptic protein interaction sites on the alpha 1A subunit, which forms the pore of the P/Q-type calcium channel. In vitro-translated 35S-synaptotagmin I bound to a site located on the cytoplasmic loop linking homologous domains II and III of the alpha 1A subunit. This direct link would target synaptotagmin, a putative calcium sensor for exocytosis, to a microdomain of calcium influx close to the channel mouth. Cysteine string proteins (CSPs) contain a J-domain characteristic of molecular chaperones that cooperate with Hsp70. They are located on synaptic vesicles and thought to be involved in modulating the activity of presynaptic calcium channels. CSPs were found to bind to the same domain of the calcium channel as synaptotagmin, and also to associate with VAMP. CSPs may act as molecular chaperones in association with Hsp70 to direct assembly or dissociation of multiprotein complexes at the calcium channel.  相似文献   

7.
The earthworm somatic muscle contains myoneural synapses forming clusters of “synaptic buttons” in which the proteins syntaxin 1, synaptotagmin 1, and alpha 1B subunit of the Ca2+ channel of the N-type were identified. It is supposed that “synaptic buttons” contain a limited number of active zones, which is due to their small size (1–2 μm) and the pattern of distribution of proteins of the exoendocytotic cycle. The postsynaptic membrane of cholinergic synapses contains nicotinic acetylcholine receptors able to bind alpha-bungarotoxin. The area of the position of receptors on postsynaptic membrane is strongly restricted to the synaptic contact region.  相似文献   

8.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   

9.
Sugita S  Südhof TC 《Biochemistry》2000,39(11):2940-2949
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance.  相似文献   

10.
Antibodies directed against purified human erythrocyte Ca2+-ATPase (purified according to a procedure modified from V. Niggli, J. T. Penniston, and E. Carafoli, 1979, J. Biol. Chem., 254, 9955–9958) were raised in rabbits. In competitive radioimmunoassay tests of immunological cross-reactivity, human erythrocyte Ca2+-ATPase shows a consistent pattern of immunological similarity to the Ca2+-ATPases derived from cell surface fractions of other species, such as rat and dog erythrocyte ghosts, rat corpus luteum plasma membranes, and rat brain synaptic plasma membranes. On the other hand, a purified Ca2+-ATPase preparation from rabbit skeletal muscle sarcoplasmic reticulum failed to show any immunological similarity to the human enzyme. The amount of Ca2+-ATPase protein in the erythrocyte ghosts was estimated to be about 0.6 μg/mg ghost protein, which was not too different from the calculated value of 1.2 ± 0.2 μg/mg ghost protein (mean ± SD, n = 6) based on the calmodulin binding studies of the erythrocyte ghosts. Anti-Ca2+-ATPase immunoglobulin G inhibited enzyme activity and calcium transport, showing that at least one subpopulation of antibodies can block the active site of the enzyme. The antibodies had no effect on the binding of calmodulin to erythrocyte membranes.  相似文献   

11.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

12.
Cerebral ischemia is a key pathophysiological feature of various brain insults. Inadequate oxygen supply can manifest regionally in stroke or as a result of traumatic brain injury or globally following cardiac arrest, all leading to irreversible brain damage. Mitochondrial function is essential for neuronal survival, since neurons critically depend on ATP synthesis generated by mitochondrial oxidative phosphorylation. Mitochondrial activity depends on Ca2+ and is fueled either by Ca2+ from the extracellular space when triggered by neuronal activity or by Ca2+ released from the endoplasmic reticulum (ER) and taken up through specialized contact sites between the ER and mitochondria known as mitochondrial-associated ER membranes. The coordination of these Ca2+ pools is required to synchronize mitochondrial respiration rates and ATP synthesis to physiological demands. In this review, we discuss the role of the proteins involved in mitochondrial Ca2+ homeostasis in models of ischemia. The proteins include those important for the Ca2+-dependent motility of mitochondria and for Ca2+ transfer from the ER to mitochondria, the tethering proteins that bring the two organelles together, inositol 1,4,5-triphosphate receptors that enable Ca2+ release from the ER, voltage-dependent anion channels that allow Ca2+ entry through the highly permeable outer mitochondrial membrane and the mitochondrial Ca2+ uniporter together with its regulatory proteins that permit Ca2+ entry into the mitochondrial matrix. Finally, we address those proteins important for the extrusion of Ca2+ from the mitochondria such as the mitochondrial Na+/Ca2+ exchanger or, if the mitochondrial Ca2+ concentration exceeds a certain threshold, the mitochondrial permeability transition pore.  相似文献   

13.
The K+, Na+ and Ca2+ form of excitable membranes of rat brain were investigated by infrared, ORD and CD spectroscopy. It is shown that with the K+ form the conformatio of relatively large parts of the membrane proteins occurs as an antiparallel β structure. No β structure is found with the Na+ and Ca2+ form. In the presence of these ions the proteins are largely helical. This suggests that during the action potential, membrane proteins change their conformation depending on the cations shifted.  相似文献   

14.
《Cell》1994,79(4):717-727
Mice carrying a mutation in the synaptotagmin I gene were generated by homologous recombination. Mutant mice are phenotypically normal as heterozygotes, but die within 48 hr after birth as homozygotes. Studies of hippocampal neurons cultured from homozygous mutant mice reveal that synaptic transmission is severely impaired. The synchronous, fast component of Ca2+-dependent neurotransmitter release is decreased, whereas asynchronous release processes, including spontaneous synaptic activity (miniature excitatory postsynaptic current frequency) and release triggered by hypertonic solution or α-latrotoxin, are unaffected. Our findings demonstrate that synaptotagmin I function is required for Ca2+-triggering of synchronous neurotransmitter release, but is not essential for asynchronous or Ca2+-independent release. We propose that synaptotagmin I is the major low affinity Ca2+ sensor mediating Ca2+ regulation of synchronous neurotransmitter release in hippocampal neurons.  相似文献   

15.
The function of synaptotagmin as a Ca2+ sensor in neurotransmitter release involves Ca2+-dependent phospholipid binding to its two C2 domains, but this activity alone does not explain why Ca2+ binding to the C2B domain is more critical for release than Ca2+ binding to the C2A domain. Synaptotagmin also binds to SNARE complexes, which are central components of the membrane fusion machinery, and displaces complexins from the SNAREs. However, it is unclear how phospholipid binding to synaptotagmin is coupled to SNARE binding and complexin displacement. Using supported lipid bilayers deposited within microfluidic channels, we now show that Ca2+ induces simultaneous binding of synaptotagmin to phospholipid membranes and SNARE complexes, resulting in an intimate quaternary complex that we name SSCAP complex. Mutagenesis experiments show that Ca2+ binding to the C2B domain is critical for SSCAP complex formation and displacement of complexin, providing a clear rationale for the preponderant role of the C2B domain in release. This and other correlations between the effects of mutations on SSCAP complex formation and their functional effects in vivo suggest a key role for this complex in release. We propose a model whereby the highly positive electrostatic potential at the tip of the SSCAP complex helps to induce membrane fusion during release.  相似文献   

16.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   

17.
Abstract: The inhibitory effects of Na+/Ca2+ exchange inhibitory peptide (XIP), which corresponds to residues 219–238 of the Na+/Ca2+ exchange protein from canine heart, were studied in both rat and human brain plasma membrane vesicles. XIP had very high potency with respect to the inhibition of the initial velocity of intravesicular Na+-dependent Ca2+ uptake in both rat brain [IC50 = 3.05 ± 0.69 µM (mean ± SE)] and human brain (IC50 = 3.58 ± 0.58 µM). The maximal inhibition seen in rat brain vesicles was ~80%, whereas human brain vesicles were inhibited 100%. XIP also inhibited extravesicular Na+-dependent Ca2+ release, and the inhibitory effect was enhanced by increasing the extravesicular Na+ concentration. In contrast, the inhibitory effect of bepridil was competitive with respect to extravesicular Na+. When XIP was added at steady state (5 min after the initiation of intravesicular Na+-dependent Ca2+ uptake), it was found that the intravesicular Ca2+ content declined with time. Analysis of unidirectional fluxes for Ca2+ at steady state showed that 50 µM XIP inhibited Ca2+ influx and efflux ~85 and 70%, respectively. This result suggested that XIP inhibited both Na+/Ca2+ exchange and Ca2+/Ca2+ exchange but had no effect on the passive release pathway for Ca2+. The results suggest structural homology among cardiac, rat, and human brain exchangers in the XIP binding domain and that the binding of Na+ or other monovalent cations, e.g., K+, is required for XIP to have its inhibitory effect on Ca2+ transport.  相似文献   

18.
《Cell》1993,72(1):153-159
Proteins that are specifically localized to synaptic vesicles in the nervous system have been proposed to mediate aspects of synaptic transmission. Antibodies raised against the cytoplasmic domains of five of these proteins, vamp, rab3A, synaptophysin, synaptotagmin, and SV2, were used to investigate their function. Microinjection of monoclonal and polyclonal antibodies raised against synaptotagmin (p65), but not the other vesicle proteins, decreases K+/Ca2+-mediated dopamine β-hydroxylase surface staining, a measure of regulated secretion in PC12 cells. Microinjection of a soluble fragment of synaptotagmin encompassing one of the domains homologous to the C2 regulatory region of protein kinase C, but lacking the membrane anchor, also inhibits evoked dopamine β-hydroxylase surface staining. These results provide support for the hypothesis that synaptotagmin, a Ca2+- and phospholipid-binding protein, is important for regulated exocytosis in neurons.  相似文献   

19.
C2 domains are widespread motifs that often serve as Ca2+-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca2+ sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca2+, and shifted the Ca2+ dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation–secretion coupling.  相似文献   

20.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号