首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus, a gram‐negative halophilic estuarine bacterium, is an opportunistic human pathogen that causes rapidly progressive fatal septicemia and necrotizing wound infection. This species also causes hemorrhagic septicemia called vibriosis in cultured eels. It has been proposed that a range of virulence factors play roles in pathogenesis during human and/or eel infection. Among these factors, a metalloprotease (V. vulnificus protease [VVP]) and a cytolytic toxin (V. vulnificus hemolysin [VVH]) are of significant importance. VVP elicits the characteristic edematous and hemorrhagic skin damage, whereas VVH exhibits powerful hemolytic and cytolytic activities and contributes to bacterial invasion from the intestine to the blood stream. In addition, a few V. vulnificus strains isolated from diseased eels have recently been found to produce a serine protease designated as V. vulnificus serine protease (VvsA) instead of VVP. Similarly to VVP, VvsA may possess various toxic activities such as collagenolytic, cytotoxic and edema‐forming activity. In this review, regulation of V. vulnificus VVP, VVH and VvsA is clarified in terms of expression at the mRNA and protein levels. The explanation is given on the basis of the quorum sensing system, which is dependent on bacterial cell density. In addition, the roles of environmental factors and global regulators, such as histone‐like nucleoid structuring protein, cyclic adeno monophosphate receptor protein, RpoS, HlyU, Fur, ToxRS, AphB and LeuO, in this regulation are outlined. The cumulative impact of these regulatory systems on the pathogenicity of V. vulnificus is here delineated.  相似文献   

2.
The covalent attachment of activated polyethylene glycol2 (PEG2) of 10,000 daltons to non- essential groups on a serine proteinase II (SepII) from Aspergillus sojae produced two modified preparations (PEG2-SepII-S and PEG2-SepII-L). The molecular weights of PEG2-SepII-S and PEG2-SepII-L were about 170,000 and 280,000, respectively. The PEG2-SepII-S lost about 80 % of its antigenicity, while the PEG2-SepU-L completely lost its antigenicity. In comparison of kinetic parameters with SepII there was less than 40 % variation in Km, but the values of kcat towards succinyl-l-leucy 1-l-leucy 1-l-valy 1-l-tyrosine 4-methylcoumaryl-7-amide (Suc-LLVY-MCA) or succinyl-l- alanyl-l-alanyl-l-valyl-l-alanine β-nitroanilide (Suc-AAVA-/>NA) decreased to about 70% less than that of SepII. The modified preparations have about 20 % activity towards fibrin hydrolysis and a low affinity for a protein proteinase inhibitor, Streptomyces subtilisin inhibitor (SSI), with a molecular weight of 23,000, while the preparations have high affinity for a low molecular weight microbial inhibitor, chymostatin. The stoichiometry of the reaction of a2-macroglobulin (α2M) with PEG2-SepII-S showed that PEG2-SepII-L bound to α2M in a molar ratio of 1:1. No appreciable differences were observed in the pH stabilities of the modified enzymes and the native one at pH 3.6, while the modified enzymes were more stable than that of the native one at pH 11.5. The two modified preparations were labile at 50°C, but the native enzyme was completely stable at 50°C.  相似文献   

3.
Inhibitory effect of alpha 2-macroglobulin on Vibrio vulnificus protease   总被引:2,自引:0,他引:2  
Vibrio vulnificus, an etiologic agent of wound infections and septicemia in humans, elaborates a metalloprotease which is known to be an important virulence factor of the Vibrio. The proteolytic activity of V. vulnificus metalloprotease (VVP) toward casein and elastin was inhibited by alpha 2-macroglobulin (alpha 2 M) at the molar ratio of 1:1, although partial activity was maintained. Permeability-enhancing and hemorrhagic activities were also inhibited, but the peptidase activity toward Z-Gly-Phe-NH2 was not reduced, even by an excess amount of alpha 2 M. VVP formed a complex with alpha 2 M through cleavage of the bait regions of all four alpha 2 M subunits and elicitation of conformational change of the alpha 2 M molecule, which resulted in entrapment of VVP in the alpha 2 M molecule. The peptidase activity of alpha 2 M-VVP complex was inhibited by low-molecular-weight inhibitors such as phosphoramidon, but IgG antibody against VVP failed to neutralize its peptidase activity. Of human plasma proteins, alpha 2 M was the only inhibitor for VVP. These findings indicate that VVP produced during V. vulnificus infection is inactivated by plasma alpha 2 M that leaks from the vascular system.  相似文献   

4.
Vibrio vulnificus is a halophilic estuarine bacterium while it causes fatal septicemia or necrotizing wound infections in humans. This pathogen secretes the metalloprotease (V. vulnificus protease: VVP) and the cytolysin (V. vulnificus hemolysin: VVH) as protein toxins; however, their production was coordinated in response to the bacterial cell density. This regulation is termed quorum sensing (QS) and is mediated by the small diffusible molecule called autoinducer 2 (AI-2). In the present study, we investigated effects of disruption of luxO encoding a central response regulator of the QS circuit, as well as effects of temperature and growth phase, on the toxin production by V. vulnificus. Disruption of luxO was found to increase VVP production and expression of its gene vvpE. The expression of smcR, crp and rpoS, of which products positively regulate vvpE expression, and luxS encoding the AI-2 synthetase were also significantly increased. On the other hand, the luxO disruption resulted in reduction of VVH production and expression of its gene vvhA. Expression of other two genes affecting the QS circuit, luxT and rpoN, were also significantly decreased. The regulation systems of VVP production were found to exert their action during the stationary phase of the bacterial growth and to be operated strongly at 26 °C. By contrast, those of VVH production apparently started at the log phase and were operated more effectively at 37 °C.  相似文献   

5.
Vibrio vulnificus is a foodborne pathogen causing septicemia with high mortality rate. In this study, we explored how Escherichia coli, one of the commensal bacteria in the human gastrointestinal tract, can interact with V. vulnificus. Our study results show that the amount of biofilm produced by V. vulnificus was reduced in the presence of E. coli ATCC 35218, although the growth of V. vulnificus L-180 remained unaffected. We also detected an antibiofilm effect of E. coli culture supernatant against V. vulnificus, which could not be reduced even after heat treatment. These findings indicate that E. coli and its culture supernatant may be suitable to prevent biofilm formation by V. vulnificus. By contrast, live cells of V. vulnificus could reduce the amount of preformed E. coli biofilm, but its culture supernatant could not. This suggests that the cell-associated factors contribute toward reduction in E. coli biofilm. Therefore, we speculate that ingestion of an infectious dose of V. vulnificus might induce dislodging of the commensal bacteria from the intestinal epithelia and thus can colonize to initiate the infection.  相似文献   

6.
Exocellular proteases produced by Vibrio fluvialis, V. furnissii, V. metschnikovii and V. campbellii were characterized and compared to those of V. mimicus protease (VMP) and V. vulnificus protease (VVP). These proteases possessed both elastolytic and hemagglutinating abilities and were identified, except that of V. metschnikovii, as metalloprotease. Conversely, V. metschnikovii protease failed to exhibit some of the salient features for metalloproteases suggesting the existence of protease(s) other than metalloprotease. However, antibodies against VVP cross-reacted to these proteases and to VMP indicating antigenic relatedness amongst vibrio proteases. This study, thus, demonstrated the prevalent distributions of antigenically related proteases both in pathogenic and non-pathogenic vibrios, bringing their status as a virulence determinant into question.  相似文献   

7.
We have identified a new factor, CFX, in human serum and plasma that inhibits the growth of cultured human and mouse cell lines. CFX was determined to be a negatively charged, hydrophobic glycoprotein, with a native molecular weight of 110–120 kDa and a minimal active subunit of 55 kDa. It is precipitated by 60% ammonium sulfate and is resistant to heat treatment at 100°C for 30 min. CFX was purified from human plasma to a single band on a gel which retained the cell growth inhibitory activity. Amino acid sequence analysis of the CFX band revealed sequences from four human glycoproteins, α1-antichymotrypsin, C1-esterase inhibitor, α1-antitrypsin, and α2-antiplasmin, all members of the superfamily of serpins. Of the four, C1-esterase inhibitor was shown to be the most potent cell growth inhibitor. These results suggest that serpins may play a cell growth inhibitory role in vivo, in addition to their role as protease inhibitors.  相似文献   

8.
Two similar but distinct forms of α1-protease inhibitor (α1-PI) have been isolated and purified 120-fold to homogeneity from the plasma of female, white Swiss (Ha/ICR) mice. The two inhibitors can be separated by chromatography on DEAE-cellulose using a shallow NaCl gradient at pH 8.9 for elution. Because of their differing specificities for elastase and trypsin we have labeled the two inhibitors α1-PI(E) and α1-PI(T), respectively. The apparent Mr for both proteins, as estimated by gel exclusion chromatography, is approximately 53,000 daltons. However by polyacrylamide gel electrophoresis in the presence of SDS, α1-PI(T) has an apparent mr of 65,000 while the apparent mr of α1-PI(E) is 55,000. These results suggest differences in charge and carbohydrate composition. The two mouse inhibitors also have different AT-terminal amino acids. Like human α1-PI the mouse inhibitors form stable complexes with proteases. However they differed from human α1-PI in that they were not found to neutralize either human thrombin or plasmin. While α1-PI(E) inhibits bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase, α1-PI(T) is an effective inhibitor only of trypsin. Plasma levels of α1-PI(E) increase significantly 24 h after stimulation of the acute phase reaction while those of α1-PI(T) do not. Our data suggest that α1-PI(E) and α1-PI(T) are products of different genes.  相似文献   

9.
The modification of myeloperoxidase and lactoperoxidase with 2-(O-methoxypolethylene glycol)-4, 6-dichloro-s-triazine, an activated polyethylene glycol (PEG1), was investigated. The modification caused a shift of the Soret band in the light absorption spectrum, from 430 nm to 418 nm in the case of myeloperoxidase (native ferric form), and from 412 nm to 406 nm in the case of lactoperoxidase (native ferric form). PEG1-modified myeloperoxidase and PEG1-modified lactoperoxidase both failed to bind with antiserum to the respective native enzyme, but both retained respectively 4·5±0·3 per cent (mean±SE, n=5) and 0·6±0·2 per cent (mean±SE, n=5) of the activities of peroxidation of the hydrogen donor o-methoxyphenol in comparison with the native enzyme, and 1·5±0·2 per cent (mean±SE, n=5) and 1·2±0·2 per cent (mean±SE, n=5) of the activities of destruction of fuchsin basic in the presence of hydrogen peroxide and a halide, bromide. The pH dependencies of the peroxidating activities were almost the same as those of the corresponding native enzymes, but both the optimal pHs of the reactions involving the destruction of fuchsin basic were shifted by approximately 1·0 pH unit toward neutral pH compared with the respective native enzymes. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Human α1-protease inhibitor which is an important plasma protein, contains a methionine residue at its reactive site. A model synthetic peptide substrate, succinyl-L-alanyl-L-alanyl-L-prolyl-L-methionine p-nitroanilide, has been employed to study the effect of oxidation of methionine on the rate of hydrolysis of this substrate by human elastases. The methionine sulfoxide derivative obtained by mild oxidation of this substrate is hydrolyzed by pancreatic elastase 2 and leukocyte elastase at rates that are 5% and 0.3% of the rates measured for hydrolysis of the parent compound by the respective enzymes. These results suggest that oxidation of the active site methionine residue of human α1-protease inhibitor may decrease the rate of reaction of pancreatic or leukocyte elastase with this inhibitor.  相似文献   

11.
Vibrio vulnificus, a good model organism of bacterial septicemia, causes fatal septicemia manifesting a fulminating course and a high mortality rate within days. In order to identify new natural substances preventing V. vulnificus infection, a plant library was screened for inhibiting cytotoxicity to host cells by using Trypan blue staining and LDH assay. We found that Polygoni Cuspidati Radix potently suppressed the acute death of HeLa and RAW264.7 cells in a dose dependent manner. Further studies revealed that Polygoni Cuspidati Radix inhibited V. vulnificus growth and survival in HI broth and seawater, respectively. We confirmed that Polygoni Cuspidati Radix contained high level of emodin by thin layer chromatography (TLC). Emodin showed direct antibacterial activity against V. vulnificus. In addition, emodin prevented the morphologic damages and acute death of HeLa cells caused from V. vulnificus. The safety of Polygoni Cuspidati Radix and emodin to host cells was confirmed by MTT assay. Polygoni Cuspidati Radix and emodin protected mice from V. vulnificus infection.  相似文献   

12.
Burkholderia pseudomallei is a serum‐resistant Gram‐negative bacterium capable of causing disseminated infections with metastatic complications. However, its interaction with nonphagocytic cells is poorly understood. We observed that exposure of B. pseudomallei and the closely related yet avirulent B. thailandensis to human plasma increased epithelial cell invasion by >20 fold. Enhanced invasion was primarily driven by a plasma factor, which required a functional complement cascade, but surprisingly, was downstream of C3 mediated opsonisation. Receptor blocking studies with RGD‐domain containing peptide and αVβ3 blocking antibody identified complement‐activated vitronectin as the factor facilitating this invasion. Plasma treatment led to the recruitment of vitronectin onto the bacterial surface, and its conversion into the active conformation. Activation of vitronectin, as well as increased invasion, required the complement pathway and was not observed in C3 or C5 depleted serum. The integrin inhibitor cilengitide, currently in clinical trials as an anti‐angiogenesis agent, suppresses plasma‐mediated Burkholderia invasion by ~95%, along with a downstream reduction in intracellular bacterial replication. We extend these findings to serum‐resistant Klebsiella pneumoniae as well. Thus, the potential use of commercially available integrin inhibitors as anti‐infective agents during selective bacterial infections should be explored.  相似文献   

13.
The aim of this study was to determine correlation between parameters of proteolysis and phenotypes of α1-proteinase inhibitor in blood plasma of children with duodenal ulcer. Activation of kininogenesis, pepsin-and trypsin like proteinases was accompanied by the decrease in activity of α2-macroglobulin and the increase in activity of acid-stable inhibitors. Three subtypes of normal phenotype of α1-proteinase inhibitor (M1M3, M1M1, M2M2) were determined. Activation of proteolysis was more pronounced in the individuals with subtype M2M2. In M2M2 activity of α1-proteinase inhibitor was two times lower than in control, in M1M1 it insignificantly differed from control group and in the M1M3 subtype it was 1.9 times higher than in control. Low activity of α1-proteinase inhibitor seen at the M2M2 subtype was accompanied by higher activity of acid-stable inhibitors; this may be regarded as the protective compensatory reaction of the body. Determination of the α1-proteinase inhibitor phenotypes may be used for evaluation of a state of proteolysis and as a basis for employment of polyvalent proteinase inhibitors for therapy of ulcer.  相似文献   

14.
Vibrio vulnificus is a ubiquitous estuarine microorganism but causes fatal systemic infections in immunocompromised humans, cultured eels or shrimps. An extracellular metalloprotease VVP/VvpE has been reported to be a potential virulence factor of the bacterium; however, a few strains isolated from a diseased eel or shrimp were recently found to produce a serine protease termed VvsA, but not VVP/VvpE. In the present study, we found that these strains had lost the 80 kb genomic region including the gene encoding VVP/VvpE. We also purified VvsA from the culture supernatant through ammonium sulfate fractionation, gel filtration and ion-exchange column chromatography, and the enzyme was demonstrated to be a chymotrypsin-like protease, as well as those from some vibrios. The gene vvsA was shown to constitute an operon with a downstream gene vvsB, and several Vibrio species were found to have orthologues of vvsAB. These findings indicate that the genes vvp/vvpE and vvsAB might be mobile genetic elements.  相似文献   

15.
The influences of the fluid superficial velocity, sample concentration, loading volume, and wash cycle on the recovery and corresponding purification factors for α1-antitrypsin [syn. α1-proteinase inhibitor (α1-PI) ] from crude mixtures of human plasma proteins were investigated using packed and expanded beds of DEAE-Spherodex LS. As part of this study, the effect of fluid superficial velocity on the bed dispersion number (D v) and dispersion coefficient (D) for this adsorbent in expanded beds was determined with feedstocks containing human serum albumin (HSA), the most abundant of the contaminating proteins in human plasma protein preparations used for the isolation of α1-PI. When multicomponent protein feedstocks prepared from human plasma were examined with DEAE-Spherodex LS, reduced chromatographic productivity was observed for α1-PI as the extent of column utilization and the superficial velocity were increased, yet the opposite trend was evident for HSA. In particular, higher adsorption capacities and recoveries were obtained for α1-PI at lower fluid superficial velocities with both packed and expanded bed conditions. These findings indicate that for process scale purifications of α1-PI from multicomponent feedstocks with expanded beds containing this silica-based ion-exchange adsorbent, the optimal range of superficial velocities to achieve the highest bed productivity will not be synonymous with maximally fluidized modes of operation. Rather, the results confirm that the adsorbent has an optimum operational performance when fluidization procedures corresponding to plug flow expansion are employed for the capture of α1-PI. These findings also indicate that advantage can be taken of displacement effects between closely related protein species with packed and expanded bed systems containing the DEAE-Spherodex LS type of ion-exchange porous silicas.  相似文献   

16.
Abnormal proteolysis is often observed during disease progression. Up-regulation of certain tumor-associated proteases such as urokinase plasminogen activator (uPA) can be a hallmark of malignant transformation. Here we report the design and synthesis of a near-infrared nanofiber precursor (NIR–NFP) for detecting uPA activity. NIR–NFP, which is optically silent in its native state, is composed of multiple self-assembled peptide units (PEG54-BK(NIR664)SGRSANA-kldlkldlkldl-CONH2). On uPA activation, NIR–NFP releases peptide fragments (PEG54-BK(NIR664)SGR-CONH2) that contribute to a significant fluorescence amplification at 684 nm. NIR–NFP was able to detect cell-secreted uPA from human cancer cells (SKBR-3, PANC-1, MCF-7, SKOV-3, MDA-MB-231, PC-3, and HT-1080) expressing various levels of uPA. Fluorescence changes were uPA dependent, as confirmed with both Western blot analysis and enzyme activity assay. Our data suggest that an optimized preparation may be useful for imaging uPA activity in vivo.  相似文献   

17.
18.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

19.
The inhibitory effects of human α2-macroglobulin (α2-M), a major plasma proteinase inhibitor, on human pepsin and gastricsin were investigated. The activities of pepsin and gastricsin towards a protein substrate (reduced and carboxymethylated ribonuclease A) were significantly inhibited by α2-M at pH 5.5, whereas those towards a peptide substrate (oxidized insulin B-chain) were scarcely inhibited. Under these conditions at pH 5.5, pepsin and gastricsin cleaved α2-M mainly at the His694-Ala695 bond and Leu697-Val698 bond, respectively, in the bait regions sequence of α2-M. The conformation of α2-M was also shown to be markedly altered upon inhibition of these enzymes as examined by native polyacrylamide gel electrophoresis and electron microscopy. These results show the entrapment and concomitant inhibition of those proteinases by α2-M.  相似文献   

20.
Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional‐autoprocessing repeats‐in‐toxin (MARTX) toxin consisting of conserved repeats‐containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv). A structure‐based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino‐terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild‐type, but not catalytically inactive, DmXVv. DmXVv was found to localize to Golgi and to directly interact with Golgi‐associated ADP‐ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv. These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号