首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ENHANCEMENT OF SENDAI VIRUS-MEDIATED CELL FUSION BY CUPRIC IONS   总被引:1,自引:0,他引:1       下载免费PDF全文
The effect of divalent cations on cell fusion by concentrated Sendai virus, inactivated by beta-propiolactone, was investigated using Vero and mouse L-929 cells in monolayers. With both cell lines, which are normally resistant to exogenous viral fusion, Cu2+ in sublethal concentrations was found to promote polykaryon formation to a marked degree. The simultaneous presence of Cu2+ and virus was required for this effect, which was thought to be related to the cytotoxic action of Cu2+ on the cell membrane. Accordingly, under standard conditions and in the absence of virus, leakage of isotopically labeled intracellular protein was shown to bear a quantitative relationship to Cu2+ concentration. Concomitant changes in the membrane were seen electron microscopically to consist of loss of microvilli and the appearance of numerous vesicles on, or adjacent to, the membrane. The relationship of enhanced fusibility to these toxic changes was not further elucidated. The fusion-promoting effect of Cu2+ far exceeded that of Ca2+; and other cations tested had no effect.  相似文献   

2.
Natural phenolic compounds (phenolic acids, flavonoids, tannins, lignans) present in food of plant origin are in the focus of interest due to their prevalence, properties and biological activity. The aim of the presented work was to investigate antioxidant and antigenotoxic effects of the anthocyanin-rich extract from red cabbage leaves (Brassica oleracea rubrum) on the changes induced by toxic Cu2+ concentrations. MeOH extract from red cabbage containing anthocyanin (ATH) and phenolic acid derivatives exhibited strong antioxidant properties. Cu2+ decreased mitotic index (MI) and inhibited proliferative activity of Vicia faba root meristematic cells. The morphology of mitotic chromosomes was changed; “erosion” and pulverization might result from Cu2+ high-cytotoxicity. Numerous micronuclei, chromatid bridges and lagging/lost chromosomes were found in the meristematic cells of V. faba, which indicate the clastogenic effect of Cu2+. The application of the ATH-rich extract lowered the number of disturbances induced by Cu2+. The positive role of the ATH-rich red cabbage extract will be discussed.  相似文献   

3.
Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies. Handling editor: S. M. Thomaz  相似文献   

4.
Effect of Potassium on Proline Accumulation in Maize during Wilting   总被引:1,自引:0,他引:1  
Leaf discs from maize (Zea mays) grown at high as well as low level of potassium, were treated with different concentrations of KC1 for 2 h in light before exposing to wilting conditions. An enhanced accumulation of free proline effected by wilting was observed in potassium treated discs. Although proline accumulation was much less in leaf discs exposed to short-term severe wilting conditions than in those exposed to long-term mild wilting conditions, the effect of potassium was still evident. Under long-term mild wilting conditions, the enhanced effect was greater in leaf discs from plants grown at high level of potassium than in those from plants grown at low levels of potassium. Treatment with NaCl instead of KC1 did not lead to extra accumulation of proline.  相似文献   

5.
Callus cultures ofArachis hypogaea L. cv. JL-24 adapted to 200 mM NaCl (otherwise lethal to cells) were used for the study. Calli grew slowly when transferred to 250 mM NaCl, but the growth was enhanced when ABA was included in the medium. ABA induced increase in growth of callus was not accompanied by corresponding increase in internal free proline levels. 0.5 mM of CaCl2 ameliorated the negative effect of NaCl indicating that cells require a specific Ca2+/Na+ ratio for their growth. Proline content also increased at this ratio thereby suggesting that increase in growth at 0.5 mM Ca2+ may be due to an increase in proline content. However, exogenous proline did not increase the growth of callus (adapted to 200 mM), and higher concentrations even inhibited the growth. This shows that proline is not required for growth or adaptation of cells to salt stress, but is produced as a consequence of stress.  相似文献   

6.
The effect of exogenous proline on the activity of the glycolate pathway in Nicotiana tabacum cv. Xanthi n.c. An exogenous proline supply in the light provokes an increase in free glycine concentration in apical tissues or in leaf disks of vegetative Nicotiana tabacum L. cv. Xanthi n.c. This does not occur in the equivalent tissues of tobacco plants after floral induction, these being naturally rich in proline. In vegetative tobacco, we have tried to determine this specific action of exogenous proline. With 14C glycine, 14CO2 experiments (Pulse-chase) and glycine decarboxylase activity determinations, we observed that glycine-serine transformation was inhibited by proline supply. Presently it is important to determine if endogenous proline acts on the same reaction.  相似文献   

7.
Summary Leakage of ions (Na+, K+) and phosphorylated metabolites (phosphorylcholine, 2-deoxyglucose 6-phosphate) through membrane lesions in intact cells or in cells modified by pore-forming agent has been studied. Leakage from intact cells isinduced by protons and by divalent cations such as Cu2+, Cd2+ or Zn2+. Leakage from agent-modified cells—or across phospholipid bilayers modified by agent—isprevented by low concentrations of the same cations and by higher concentrations of Ca2+, Mn2+ or Ba2+; Mg2+, dimethonium, spermine, or spermidine are virtually ineffective. The relative efficacy of a particular cation (e.g. Ca2+) depends more on cell type than on the nature of the pore-forming agent. The predominant effect is on binding of cation to specific sites, not on surface charge. Surface charge, on the other hand, does affect leakage from agent-modified cells in that suspension in nonionic media reduces leakage, which can be restored by increasing the ionic strength: univalent (Na+, K+, Rb+, NH 4 + ) and divalent (Mg2+, dimethonium) cations are equally effective; addition of protons or divalent cations such as Zn2+ to this system inhibits leakage. From this and other evidence here presented it is concluded that leakage across membranes is modulated by the presence of endogenous anionic components: when these are in the ionized state, leakage is favored; when unionized (as a result of protonation) or chelated (by binding to divalent cation), leakage is prevented. It is suggested that such groups are exposed at the extracellular face of the plasma membrane.  相似文献   

8.
The inter-relationship between exogenous calcium (Ca2+) during cold pretreatment and cold-enhanced somatic embryogenesis was investigated using cell suspension cultures of Astragalus adsurgens Pall. Cell suspension was obtained from embryogenic callus and could be induced to form somatic embryos in the differentiation medium. Suspension cells, after cold-treatment at 8 °C for 2 to 3 wk, displayed an enhanced capacity for somatic embryogenesis as compared to those without cold pretreatment. Longer cold pretreatment (> 4 wk) resulted in the inhibition of somatic embryogenesis. The enhanced embryogenic response of cells to cold pretreatment was dependent on the Ca2+ level in the pretreatment medium. Ca2+ levels below 1 mM suppressed the cold-enhanced response. Addition of lanthanum into the pretreatment medium completely abolished the cold induced enhancement of somatic embryogenesis. These results suggest that embryogenic cells require a minimal concentration of Ca2+ during pretreatment for the expression of this cold-enhanced capacity for somatic embryogenesis in A.adsurgens and the influx of exogenous Ca2+ during pretreatment might also be involved.  相似文献   

9.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

10.
Earlier studies suggested that copper enhances the antimicrobial activity of some formaldehyde (FA)-condensate biocides in metalworking fluids as well as FA in laboratory media. The possible synergistic interaction between FA and Cu2+ in combination were tested against Pseudomonas aeruginosa in trypic soy broth, mineral salt base-glucose medium, and 0·9% NaCl solution. In all cases, Cu2+ enhanced the FA bactericidal activity. A sequential treatment of bacterial cultures was employed to study the increased effectiveness of the Cu2+ and FA combination. The cells were exposed to FA or Cu2+ and subsequently exposed to the alternate compound with centrifugation and washing between exposures. Results varied depending on the medium. Synergistic activity of FA and Cu2+ was established based on the interpretation of the results.  相似文献   

11.
To cast light upon the role of Ca1+ and calmodulin on photosynthetic rate (Pn), dark respiration (RD) and amino acid and protein contents in salinity stressed and non-stressedChlorella cultures, the Ca2+ chelator EGTA [ethylene glycol-bis-(2-aminoethyl ether)-N,N- tetraacetate] and the calmodulin antagonist TFP (trifluperazine) were used. TFP markedly inhibited PN while EGTA exerted a slight, if any, effect on PN. NaCl tolerance, on the other side, was markedly abolished by TFP that inhibited PN and lowered rate of proline accumulation. Calmodulin might be involved in osmoregulation and salt tolerance ofChlorella. RD, however, was markedly enhanced by EGTA and Ca2+-free medium and hence the Ca2+ deprivation increased stress severity exerted by NaCl. Combinations of Na+ and Ca2+ enhanced PN, decreased RD and proline content in comparison with an osmotically equivalent reference culture containing only NaCl. Addition of Ca2+ to TFP treated cultures failed to reactivate calmodulin for proline synthesis. However, when Ca2+ was added to EGTA-treated cultures, only relatively reduced proline contents were recorded.  相似文献   

12.
Red cabbage is a source of health beneficial substances with antioxidant and antigenotoxic properties. HPLC analysis specifying the content of the investigated extract indicated that mainly anthocyanins (ATH) were responsible for its abilities. Cytological research was conducted with two experimental models: plant tissues—meristematic cells of Vicia faba, and animal tissue elements—human lymphocytes. Positive influence of ATH extract on mitotic activity of Vicia cells exposed to Cu2+ stress, and inhibitory effect of ATH on cytotoxic actions of Cu2+ on lymphocytes were demonstrated. In all experimental series with ATH application in combinations with Cu2+, mitotic index (MI) were higher than those obtained for only Cu2+ stressed tissues. Preincubation in ATH before Cu2+ stress had the best effect. Similarly, after ATH applications in all tested series decrease in frequency of micronuclei (MN) appearance was noticed in comparison with only Cu2+ stressed material. In the case of Vicia cells ATH acted effectively even applied after Cu2+ stress. It suggests that this ATH mixture not only prevents and limits but also heals the cytological injury caused by Cu2+ stress.  相似文献   

13.
Summary This study provides first-hand information on the salinity and copper-induced oxidative damage and its protection in Anabaena doliolum by the antioxidant defence system. Oxidative damage measured in terms of lipid peroxidation, electrolyte leakage and H2O2 production was induced by different concentrations of NaCl and Cu2+. A greater electrolyte leakage by NaCl than Cu2+ supported the hypothesis of salinity being more injurious than copper. To explore the survival strategies of A. doliolum under NaCl and Cu stress, enzymatic antioxidant activities e.g. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) and nonenzymatic antioxidant contents such as glutathione reduced (GSH), ascorbate, α-tocopherol, and carotenoid were measured. A general induction in SOD and APX activities as well as ascorbate and α-tocopherol contents was found under NaCl and Cu2+ stress. In contrast to this, an appreciable decline in GR activity, GSH pool and carotenoid content under Cu2+ and an increase under NaCl stress were observed. CAT activity was completely inhibited at high doses of NaCl but stimulated following Cu2+ treatment. The above results suggest the involvement of APX and CAT in the scavenging of H2O2 under Cu2+ stress. In contrast to this, only APX was involved in H2O2 scavenging under salt stress. Our postulate of Cu2+-mediated antagonism of salt stress can be explained by a conceivable reversion of Na+-induced disturbance of cellular homeostasis by redox active Cu2+.  相似文献   

14.
Nostoc muscorum required an active proline oxidase in order to assimilate exogenous proline as a source of fixed nitrogen. A mutant strain (Acr) resistant to growth inhibition by L-azetidine-2-carboxylate (AC) was found to be deficient in proline oxidase activity, and to be a proline overaccumulator. Proline overaccumulation, resulting either from mutational acquisition of the Acr phenotype or from salinity-inducible uptake of exogenous proline, conferred enhanced salinity tolerance in this cyanobacterium.  相似文献   

15.
Exposure of Fucus spiralis germlings to precise copper concentrations (0 to 844?nM?Cu2+) in chemically defined medium demonstrated a relationship between ultrastructural changes and growth retardation with increasing copper concentration. Electron-translucent vesicles, present in ova, which normally disappear after fertilization, accumulated in germlings exposed to Cu2+ above 10.6?nM, suggesting that copper may inhibit a metabolic pathway involved in cell wall formation which is initiated by fertilization. No membrane damage was observed during the exposure period. During a post-exposure period in copper-free medium, recovery occurred (rhizoid extension, apical hair formation) in germlings previously exposed to concentrations below 106?nM?Cu2+ and electron-translucent vesicles became granular and disappeared. It is proposed that the electron-translucent vesicles contain a cell wall precursor and that copper inhibits its incorporation into the cell wall, preventing growth and development of the zygote.  相似文献   

16.
Copper (Cu2+) is an essential element that plays important roles in physiological functions of the body. However, high Cu2+ levels can have toxic implications. This study aims to investigate the constitutive response to Cu2+ exposure of xenobiotic-metabolizing enzymes in cultured rat liver (H4-II-E) cell lines. Rat cells were exposed to copper sulfate (0–500 μM) for 24 h. The effects of Cu2+ on the messenger RNA (mRNA) expressions of phase I and II enzymes and regulatory elements were examined using real-time PCR. Metallothionein mRNA expression was induced in a dose-dependent manner after treatment with Cu2+. mRNA expressions of phase I enzymes such as cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2) were slightly induced after exposure to low concentrations of Cu2+; however, CYP1A1 and CYP1A2 mRNA expressions were significantly downregulated at higher Cu2+ concentrations. These effects corresponded with expression of aryl hydrocarbon receptor mRNA. The mRNA expressions of phase II enzymes were reduced upon exposure to Cu2+. In conclusion, phase I and II enzyme expressions were significantly modulated upon Cu2+ exposure. These results indicated that Cu2+ exposure had toxicological implications for cultured H4-II-E cells.  相似文献   

17.
Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca2+ flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca2+. The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca2+ levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca2+ flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca2+ flux. Acetate inhibits the Ca2+ accumulation elicited by the ethanol/osmotic stress. The Ca2+ flux is primarily via the Cch1 Ca2+ influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca2+ flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol.  相似文献   

18.
A new carbazole–azine based fluorescent sensor was synthesized and characterized. The selectivity of the sensor for Cu2+ over other counter ions in a dimethyl sulfoxide/H2O mixture was shown through enhancement in fluorescence – an off to on transformation. The specificity of the probe towards Cu2+ was evident in ultraviolet/visible, fluorescence, Fourier transform infrared and mass studies. Application of the probe in the cell imaging and cytotoxicity of living cells is illustrated.  相似文献   

19.
This study was designed to examine whether exogenous Ca2+ would improve nitrogen nutrition, water status and growth of high temperature (HT)-stressed wheat (Triticum aestivum) seedlings. Wheat plants were exposed to 35/30 and 25/20°C as temperature control. Some of HT-stressed plants were simultaneously treated with 4 mM Ca2+. External Ca2+ could obviously improve growth of HT-exposed wheat seedlings indicated by the biomass. Compared with Ca2+-untreated plants, total nitrogen content showed a significant increase in Ca2+-treated plants under HT stress, this primarily resulted from enhanced nitrate reductase activity and depressed loss of ammonium through photorespiration. External Ca2+ application could also increase leaf relative water content and alleviate osmotic stress via increased K+ ion and water-soluble carbohydrates in HT-stressed plants. Whereas free proline content showed remarkable decline in Ca2+-treated plants at HT stress.  相似文献   

20.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号