首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

2.
ABSTRACT. The reproductive status of individual queens in relation to the number of queens in polygyne colonies of Solenopsis invicta Buren was investigated under both field and laboratory conditions. In field colonies, the weight of individual queens is inversely related to the number of resident queens present. The weight of a queen is positively correlated with fecundity, as measured by the number of eggs laid in 5 h in isolation. Thus increasing queen number has a strong negative effect on the fecundity of individual queens in these colonies. A similar relationship was established in standardized laboratory colonies using queens from a single experimental population. Colony size by itself had no significant effect on queen weight in either the field or laboratory colonies, suggesting that the inverse relationship between queen number and fecundity results from mutual inhibition among queens, possibly involving pheromones, rather than reduced nutrition through lower worker/queen ratios. While uninseminated queens can comprise up to 50% of the functional (i.e. egglaying) queens in polygyne colonies of this ant, they tend to be less fecund than their inseminated nestmates; uninseminated queens within a given colony generally weigh 5–25% less.  相似文献   

3.
Facultative polygyny and habitat succession in boreal ants   总被引:2,自引:0,他引:2  
High dispersal risks of ant queens make staying in the natal patch more attractive than long range dispersal. These alternative strategies and the mode of colony founding determine the average number of queens in the population. Increasing competition and queen predation make independent colony founding increasingly difficult and the only option for new queens to reproduce in the habitat patch may be to enter an existing colony. The effect of nest-site availability to the number of queens was studied in successional spruce-dominated taiga forests in facultatively polygynous ants Myrmica ruginodis, M. sulcinodis, Leptothorax acervorum, Formica sanguinea and F. truncorum. Decreasing relatedness among worker nestmates supports an association between increasing habitat age and polygyny to some extent. M. sulcinodis and L. acervorum persist in this type of taiga only for a relatively short period. Relatedness varied only slightly among populations, but lower relatedness estimated in other studies suggested higher levels of polygyny in older populations. In M. ruginodis there was more variation in relatedness and it was possibly connected to the relative proportions of the two social forms of the species. In F. sanguinea and F. truncorum the decrease in relatedness with increasing age of the habitat was clearest. Other factors favouring limited dispersal and acceptance of new queens in the colonies are, however, hard to separate.  相似文献   

4.
《Animal behaviour》1988,36(1):159-165
A comparison of several physiological parameters of queens of Iridomyrmex humilis in experimental monogynous and polygynous colonies showed that queens in monogynous colonies became heavier, had more developed ovaries and laid about twice as many eggs. Workers in monogynous colonies were more attracted to queens, which therefore probably received more food. This may partially explain the higher weight and fecundity of queens in monogynous colonies of Iridomyrmex humilis and possibly other ant species. In polygynous colonies, queens differed greatly in their fecundity. These differences did not appear to be the result of a dominance hierarchy. These results are discussed from an evolutionary point of view. Two hypotheses of mutualism and colony level selection are proposed as an alternative to kin selection which is unlikely to be the exclusive selective influence in the evolution of polygyny either in I. humilis or in most other ant species.  相似文献   

5.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

6.
Summary: Queens of the pharaoh's ant Monomorium pharaonis (L.), like several other ant species, feed on larval secretions as their main nourishment and their fecundity is positively correlated with the number of large larvae present in the nest. The surplus of secretions produced by larvae is stored in a temporary caste of replete workers, which comprises young workers who remain in the nest and store liquid nourishment. Repletes are characterised by a conspicuously large gaster, caused by large amounts of liquid food stored in the crop, from which it may be regurgitated and distributed among colony members. In this study, repletes of pharaoh's ants were demonstrated to be functioning as buffers, smoothing fluctuations in availability of high quality food to the reproductive queens when larvae are scarce or missing, thus temporarily keeping up the egg production of queens.¶In undisturbed two-queen colonies with 20 large worker larvae and 30 workers (15 young and 15 old workers), approximately 10 repletes developed (one replete per two larvae). Development of older workers into repletes, when some or all repletes had been removed from the colonies, demonstrated that their temporal polyethism exhibits great plasticity in this trait.¶This study confirmed that, in pharaoh's ants, the regulation of fecundity depends not only on the food flow to the queen from larvae or from repletes but also on an unknown larval stimulus.¶The term crop repletes is suggested for replete workers which use their crop to store nourishment, as opposed to fat-body repletes, which store nourishment in their fat body.¶The presence of brood tending crop repletes in nests in several European ant species of Leptothorax, Myrmica, and Lasius, show that repletism is a common trait in ants, and that it may play an important role in regulation of nutrition in ant colonies, as demonstrated in Monomorium pharaonis.  相似文献   

7.
Eusocial insects vary significantly in colony queen number and mating frequency, resulting in a wide range of social structures. Detailed studies of colony genetic structure are essential to elucidate how various factors affect the relatedness and the sociogenetic organization of colonies. In this study, we investigated the colony structure of the Australian jumper ant Myrmecia pilosula using polymorphic microsatellite markers. Nestmate queens within polygynous colonies, and queens and their mates, were generally unrelated. The number of queens per colony ranged from 1 to 4. Queens were estimated to mate with 1–9 inferred and 1.0–11.4 effective mates. This is the first time that the rare co-occurrence of polygyny and high polyandry has been found in the M. pilosula species group. Significant maternity and paternity skews were detected at the population level. We also found an isolation-by-distance pattern, and together with the occurrence of polygynous polydomy, this suggests the occurrence of dependent colony foundation in M. pilosula; however, independent colony foundation may co-occur since queens of this species have fully developed wings and can fly. There is no support for the predicted negative association between polygyny and polyandry in ants.  相似文献   

8.
In myrmecophytes, plants with structures in which ants establish colonies, there is strong competition among ant queens for access to host plants. However, our knowledge of how queens of different partner species interact when attempting to colonize plants remains limited. The Amazonian myrmecophyte Maieta guianensis is colonized by queens of two ant species: Crematogaster laevis and Pheidole minutula. We elucidated the competitive ranking of queens of these species and tested the hypothesis that cooperative colony founding (pleometrosis) by P. minutula queens could alter this ranking. We found that C. laevis queens are behaviorally dominant to P. minutula when individual queens encounter each other. Despite being inferior in combat, however, P. minutula queens successfully colonized seedlings at similar rates whether they were placed alone or in concert with a C. laevis queen. This may have occurred because the smaller P. minutula queens frequently entered domatia before the more robust C. laevis queens. Although C. laevis queens can evict P. minutula queens that had previously colonized domatia, this was an infrequent phenomenon—perhaps because while not fatal, conflicts often resulted in serious injury. Furthermore, by colonizing the same plant cooperative P. minutula queens dramatically reduce the probability that C. laevis colonizes host-plants without reducing their own per capita rates of colonization success. To our knowledge, this is a novel benefit of pleometrosis, whose primary advantages have primarily been thought to occur after the critical stage of colony establishment. Given the decreased likelihood of colonization when faced with multiple P. minutula, it may be that C. laevis’ persistence at the landscape level is enhanced by such factors as priority effects, superior dispersal ability, or niche partitioning.  相似文献   

9.
The fungal cultivars of fungus‐growing ants are vertically transmitted by queens but not males. Selection would therefore favor cultivars that bias the ants’ sex ratio towards gynes, beyond the gyne bias that is optimal for workers and queens. We measured sex allocation in 190 colonies of six sympatric fungus‐growing ant species. As predicted from relatedness, female bias was greater in four singly mated Sericomyrmex and Trachymyrmex species than in two multiply mated Acromyrmex species. Colonies tended to raise mainly a single sex, which could be partly explained by variation in queen number, colony fecundity, and fungal garden volume for Acromyrmex and Sericomyrmex, but not for Trachymyrmex. Year of collection, worker number and mating frequency of Acromyrmex queens did not affect the colony sex ratios. We used a novel sensitivity analysis to compare the population sex allocation ratios with the theoretical queen and worker optima for a range of values of k, the correction factor for sex differences in metabolic rate and fat content. The results were consistent with either worker or queen control, but never with fungal control for any realistic value of k. We conclude that the fungal symbiont does not distort the ants’ sex ratio in these species.  相似文献   

10.
In ant–plant protection mutualisms, plants provide nesting space and nutrition to defending ants. Several plant–ants are polygynous. Possessing more than one queen per colony can reduce nestmate relatedness and consequently the inclusive fitness of workers. Here, we investigated the colony structure of the obligate acacia‐ant Pseudomyrmex peperi, which competes for nesting space with several congeneric and sympatric species. Pseudomyrmex peperi had a lower colony founding success than its congeners and thus, appears to be competitively inferior during the early stages of colony development. Aggression assays showed that P. peperi establishes distinct, but highly polygynous supercolonies, which can inhabit large clusters of host trees. Analysing queens, workers, males and virgin queens from two supercolonies with eight polymorphic microsatellite markers revealed a maximum of three alleles per locus within a colony and, thus, high relatedness among nestmates. Colonies had probably been founded by one singly mated queen and supercolonies resulted from intranidal mating among colony‐derived males and daughter queens. This strategy allows colonies to grow by budding and to occupy individual plant clusters for time spans that are longer than an individual queen’s life. Ancestral states reconstruction indicated that polygyny represents the derived state within obligate acacia‐ants. We suggest that the extreme polygyny of Pseudomyrmex peperi, which is achieved by intranidal mating and thereby maintains high nestmate relatedness, might play an important role for species coexistence in a dynamic and competitive habitat.  相似文献   

11.
We collected four solitary queens of the invasive ant Anoplolepis gracilipes under stones in East Java, Indonesia. They produced nanitic workers by claustral colony foundation. This is the first report of independent colony foundation by queens in this species. The discovery may give an important insight into discussion on the origin of this invasive ant.  相似文献   

12.
In colonies of the queen‐polymorphic ant Vollenhovia emeryi, some colonies produce only long‐winged (L) queens, while others produce only short‐winged (S) queens. At four nuclear microsatellite loci, males in the S colony had alleles that were different from those of their queen. This suggests that the nuclear genome of males is not inherited from their colony queen, as has also been described for Wasmannia auropunctata (Roger). In V. emeryi the possibility of male transfer from other colonies has not been ruled out because previous studies of this species have obtained only nuclear gene information. We analyzed both mitochondrial and nuclear genes for S queens, S males and L queens to clarify the origins of males. Sequence analyses showed that although S queens and S males shared the same mtDNA haplotype, they had a different genotype at a nuclear gene (long‐wavelength opsin) locus. Neighbor‐joining analysis based on the four microsatellite loci also suggested gene pool separation between S queens and S males. These results are consistent with predictions of clonal reproduction by males. While L queens share opsin genotypes with S males, they have very different mtDNA sequences. Hybridization in the near past between S queens and L males or gene transmission from S males to L queen populations in the present would explain these differences.  相似文献   

13.
The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long‐lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found that queens are remarkably efficient and only use a median of 2 sperm per egg fertilization, with decreasing sperm use in older queens. The number of sperm in storage was always a significant predictor for the number of sperm used per fertilization, indicating that queens use a constant ratio of spermathecal fluid relative to total spermathecal volume of 2.364 × 10?6 to fertilize eggs. This allowed us to calculate a lifetime fecundity for honeybee queens of around 1,500,000 fertilized eggs. Our data provide the first empirical evidence that honeybee queens do not manipulate sperm use, and fertilization failures in worker‐destined eggs are therefore honest signals that workers can use to time queen replacement, which is crucial for colony performance and fitness.  相似文献   

14.
In ants, queen adoption is a common way of achieving secondary polygyny but the mechanisms involved are little known. Here we studied the process of long-term adoptions of alien queens in the facultative polygynous ant Ectatomma tuberculatum. In eight out of 10 successful adoption experiments, all the introduced queens showed similar behavior and fecundity as the resident queens even after 2 months, indicating complete integration into the colony. Chemical analysis revealed that the cuticular hydrocarbon profiles of resident and introduced queens were clearly distinct from those of workers and that they did not change after adoption. We propose that queen-specific cuticular hydrocarbon profile may represent a reliable signal of queen’s fertility and discuss about the evolution of high level of queen acceptance in E. tuberculatum.  相似文献   

15.
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non‐nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent‐offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.  相似文献   

16.
Evolutionary theories of ageing predict that life span increases with decreasing extrinsic mortality, and life span variation among queens in ant species seems to corroborate this prediction: queens, which are the only reproductive in a colony, live much longer than queens in multi-queen colonies. The latter often inhabit ephemeral nest sites and accordingly are assumed to experience a higher mortality risk. Yet, all prior studies compared queens from different single- and multi-queen species. Here, we demonstrate an effect of queen number on longevity and fecundity within a single, socially plastic species, where queens experience the similar level of extrinsic mortality. Queens from single- and two-queen colonies had significantly longer lifespan and higher fecundity than queens living in associations of eight queens. As queens also differ neither in morphology nor the mode of colony foundation, our study shows that the social environment itself strongly affects ageing rate.  相似文献   

17.
Morphologically specialized queens are absent in Pachycondyla (=  Ophthalmopone ) berthoudi (ant subfamily Ponerinae). Instead, several of the workers mate and reproduce (gamergates). Gamergate proportion in nests commonly varies between nests and different times of the year. Individual fecundity of gamergates varies according to the number of these individuals in a nest, and we examined their behaviour in relation to fecundity in nests with different proportions of gamergates. In nests with high proportions of gamergates, they exhibited a diversity of behaviours inside the nest and in some cases could not be distinguished behaviourally from sterile workers. The fecundity of these gamergates was low and variable. In nests with low proportions, gamergates were relatively more fecund, and did not participate in colony labour. The behavioural profile of gamergates is therefore linked to their reproductive physiology, which is influenced by the number of mated individuals in the nest.  相似文献   

18.
The ponerine ant Pachycondyla goeldii is a monogynous (i.e. one queen per colony) arboreal species that colonizes pioneer areas. Founding queens and first generation workers initiate their own ant garden by building a cardboard-like structure into which epiphyte seeds are integrated. Following the growth of the epiphyte, the colony establishes its nest within the root system. This particular nest-building behavior is crucial in an environment where suitable nest sites are rare. Nevertheless, the slow growing process of ant gardens does not allow this species to readily evacuate and find another refuge in the advent of an attack by a predator or worsening climatic conditions. Previous field studies of P. goeldii were performed after forest destruction and subsequent colonization by P. goeldii. As a result, the colonies studied where relatively young and monodomous (i.e. one nest per colony). Our study of nest composition, worker exchanges between ant gardens in the field, and dyadic encounters shows that mature colonies of P. goeldii are polydomous (i.e. multiple nests per colony). In ants, the association of polydomy with monogyny has infrequently been reported. To our knowledge, P. goeldii represents the first record of a Ponerinae exhibiting both these particular characteristics. Our field and laboratory experiments suggest that polydomy is adaptively advantageous in coping with the microclimatic instability of pioneer areas by providing colonies with easily accessible nests.  相似文献   

19.
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single‐queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker) generations cohabiting within an ant colony.  相似文献   

20.
Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in‐depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long‐winged (L) morph is predominant in Korean populations, and the short‐winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection and that Wolbachia infection does not influence clonal reproduction (as is the case in other ant species).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号