共查询到20条相似文献,搜索用时 12 毫秒
1.
Tatyana B. Eronina Natalia A. Chebotareva Sergey Yu. Kleymenov Svetlana G. Roman Valentina F. Makeeva Boris I. Kurganov 《Biopolymers》2010,93(11):986-993
The study of the kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscles by dynamic light scattering at 48°C showed that 2‐hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) accelerated the aggregation process and induced the formation of the larger protein aggregates. The reason of the accelerating effect of HP‐β‐CD is destabilization of the protein molecule under action of HP‐β‐CD. This conclusion was supported by the data on differential scanning calorimetry and the kinetic data on thermal inactivation of Phb. It is assumed that destabilization of the Phb molecule is due to preferential binding of HP‐β‐CD to intermediates of protein unfolding in comparison with the original native state. The conclusion regarding the ability of the native Phb for binding of HP‐β‐CD was substantiated by the data on the enzyme inhibition by HP‐β‐CD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 986–993, 2010. 相似文献
2.
Tie-Mei Zhang Claes-Gran
stenson Willy J. Malaisse 《Cell biochemistry and function》1994,12(3):185-189
Glycogen accumulation in pancreatic islet cells in situations of sustained hyperglycaemia may participate in the phenomenon of so-called B-cell glucotoxicity. Unexpectedly, however, previously little if any glycogen was found in islet cells of non-insulin-dependent diabetic Goto-Kakizaki rats (GK rats). Therefore, the activities of glycogen synthase, glycogen phosphorylase and α-amylase were measured in islets of control and GK rats. No significant difference in enzymatic activity was observed between the control and diabetic animals. In the liver, the activity of glycogen synthase appeared even somewhat higher in GK rats than in control animals. It is concluded that the diabetic syndrome in the GK rats does not involve any major anomaly of glycogen synthase and glycogen phosphorylase activity in the liver of these animals, as well as α-amylase, in pancreatic islets. 相似文献
3.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998 相似文献
4.
Zuzana Dostalova Xiaojuan Zhou Aiping Liu Xi Zhang Yinghui Zhang Rooma Desai Stuart A. Forman Keith W. Miller 《Protein science : a publication of the Protein Society》2014,23(2):157-166
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state. 相似文献
5.
6.
The effect of insulin on glycogen synthesis and key enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase, was studied in HepG2 cells. Insulin stimulated glycogen synthesis 1.83-3.30 fold depending on insulin concentration in the medium. Insulin caused a maximum of 65% decrease in glycogen phosphorylase 'a' and 110% increase in glycogen synthase activities in 5 min. Although significant changes in enzyme activities were observed with as low as 0.5 nM insulin level, the maximum effects were observed with 100 nM insulin. There was a significant inverse correlation between activities of glycogen phosphorylase 'a' and glycogen synthase 'a' (R2 = 0.66, p < 0.001). Addition of 30 mM glucose caused a decrease in phosphorylase 'a' activity in the absence of insulin and this effect was additive with insulin up to 10 nM concentration. The inactivation of phosphorylase 'a' by insulin was prevented by wortmannin and rapamycin but not by PD98059. The activation of glycogen synthase by insulin was prevented by wortmannin but not by PD98059 or rapamycin. In fact, PD98059 slightly stimulated glycogen synthase activation by insulin. Under these experimental conditions, insulin decreased glycogen synthase kinase-3 activity by 30-50% and activated more than 4-fold particulate protein phosphatase-1 activity and 1.9-fold protein kinase B activity; changes in all of these enzyme activities were abolished by wortmannin. The inactivation of GSK-3 and activation of PKB by insulin were associated with their phosphorylation and this was also reversed by wortmannin. The addition of protein phosphatase-1 inhibitors, okadaic acid and calyculin A, completely abolished the effects of insulin on both enzymes. These data suggest that stimulation of glycogen synthase by insulin in HepG2 cells is mediated through the PI-3 kinase pathway by activating PKB and PP-1G and inactivating GSK-3. On the other hand, inactivation of phosphorylase by insulin is mediated through the PI-3 kinase pathway involving a rapamycin-sensitive p70s6k and PP-1G. These experiments demonstrate that insulin regulates glycogen phosphorylase and glycogen synthase through (i) a common signaling pathway at least up to PI-3 kinase and bifurcates downstream and (ii) that PP-1 activity is essential for the effect of insulin. 相似文献
7.
Bárbara Lara‐Chacón Mario Bermúdez de León Daniel Leocadio Pablo Gómez Lizeth Fuentes‐Mera Ivette Martínez‐Vieyra Arturo Ortega David A. Jans Bulmaro Cisneros 《Journal of cellular biochemistry》2010,110(3):706-717
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
8.
Chrysina ED Kosmopoulou MN Tiraidis C Kardakaris R Bischler N Leonidas DD Hadady Z Somsak L Docsa T Gergely P Oikonomakos NG 《Protein science : a publication of the Protein Society》2005,14(4):873-888
In an attempt to identify leads that would enable the design of inhibitors with enhanced affinity for glycogen phosphorylase (GP), that might control hyperglycaemia in type 2 diabetes, three new analogs of beta-D-glucopyranose, 2-(beta-D-glucopyranosyl)-5-methyl-1, 3, 4-oxadiazole, -benzothiazole, and -benzimidazole were assessed for their potency to inhibit GPb activity. The compounds showed competitive inhibition (with respect to substrate Glc-1-P) with K(i) values of 145.2 (+/-11.6), 76 (+/-4.8), and 8.6 (+/-0.7) muM, respectively. In order to establish the mechanism of this inhibition, crystallographic studies were carried out and the structures of GPb in complex with the three analogs were determined at high resolution (GPb-methyl-oxadiazole complex, 1.92 A; GPb-benzothiazole, 2.10 A; GPb-benzimidazole, 1.93 A). The complex structures revealed that the inhibitors can be accommodated in the catalytic site of T-state GPb with very little change of the tertiary structure, and provide a rationalization for understanding variations in potency of the inhibitors. In addition, benzimidazole bound at the new allosteric inhibitor or indole binding site, located at the subunit interface, in the region of the central cavity, and also at a novel binding site, located at the protein surface, far removed (approximately 32 A) from the other binding sites, that is mostly dominated by the nonpolar groups of Phe202, Tyr203, Val221, and Phe252. 相似文献
9.
Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2β1 in tumor tissues from microtubule‐directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2β1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2β1? tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2β1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG‐PLA to co‐encapsulate the integrin α2β1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2β1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG‐PLA nanoparticles could reverse the resistance. 相似文献
10.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd. 相似文献
11.
M. Van Puymbroeck M. E. M. Kuilman R. F. M. Maas R. F. Witkamp L. Leyssens A. S. J. P. A. M. Van Miert L. Hendriks D. Vanderzande P. Adriaensens M. -P. Jacobs J. Raus 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1999,728(2):1289
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters. 相似文献
12.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol. 相似文献
13.
Emma Burgos‐Ramos Gabriel Á Martos‐Moreno Manuela G. López Rosario Herranz David Aguado‐Llera Javier Egea Diana Frechilla Edurne Cenarruzabeitia Rafael León Eduardo Arilla‐Ferreiro Jesús Argente Vicente Barrios 《Journal of neurochemistry》2009,109(2):360-370
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling. 相似文献
14.
Deborah L. Webb Patricia J. Conrad Lan Ma Marie-Luise Blue 《Journal of cellular biochemistry》1996,61(1):127-138
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc. 相似文献
15.
16.
Nuclear diacylglycerol lipase‐α in rat brain cortical neurons: evidence of 2‐arachidonoylglycerol production in concert with phospholipase C‐β activity 下载免费PDF全文
Gontzal García del Caño Xabier Aretxabala Imanol González‐Burguera Mario Montaña Ramón J. Barrio Carmen Sampedro M. Arantzazu Goicolea Joan Sallés 《Journal of neurochemistry》2015,132(5):489-503
In this report, we describe the localization of diacylglycerol lipase‐α (DAGLα) in nuclei from adult cortical neurons, as assessed by double‐immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double‐labeling assays using the anti‐DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα‐signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC‐35‐ and NeuN‐signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C‐β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC‐35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2‐arachidonoylglycerol (2‐AG) by liquid chromatography and mass spectrometry (LC‐MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2‐AG production, and its PLCβ/DAGLα‐dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2‐AG locally produced within the neuronal nucleus.
17.
Claudia A. Simões‐Pires Bouchra Hmicha Andrew Marston Kurt Hostettmann 《Phytochemical analysis : PCA》2009,20(6):511-515
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
Terumasa Umemoto Yu Matsuzaki Yoshiko Shiratsuchi Michihiro Hashimoto Takayuki Yoshimoto Ayako Nakamura‐Ishizu Brian Petrich Masayuki Yamato Toshio Suda 《The EMBO journal》2017,36(16):2390-2403
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions. 相似文献
19.
20.
Miyuki Bohgaki Masaki Matsumoto Tatsuya Atsumi Takeshi Kondo Shinsuke Yasuda Tetsuya Horita Keiichi I. Nakayama Fumihiko Okumura Shigetsugu Hatakeyama Takao Koike 《Journal of cellular and molecular medicine》2011,15(1):141-151
Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β2‐glycoprotein I (β2GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen‐activated protein kinase (MAPK) pathway plays an important role in aPL‐induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β2GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β2GPI interacts with plasma gelsolin, which binds to integrin a5β1 through fibronectin. The tethering of β2GPI to monoclonal anti‐β2GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti‐β2GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti‐integrin a5β1 antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin‐integrin signalling pathway, was phosphorylated by anti‐β2GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti‐β2GPI antibody‐induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS. 相似文献