首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Sun W  Zhang C  Ji G  Ge Y  Xu Y  Zhao Y 《Gene》2011,485(2):160-166
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways.  相似文献   

2.
Yang M  Wang X  Chen D  Wang Y  Zhang A  Zhou H 《PloS one》2012,7(4):e35011
In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1) has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL) and head kidney leukocytes (HKL). It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ) and T/B cell markers [Cd4-like (Cd4l), Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5), was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5(+) leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes.  相似文献   

3.
目的:构建小鼠转化生长因子β1(TGF-β1)短发夹RNA(shRNA)真核表达载体,探讨TGF-β1在血管发育中的调控作用。方法:根据GenBank小鼠TGF-β1mRNA序列,设计合成三对短链寡核苷酸,退火后形成双链DNA并克隆至入门载体DEN_mH1c。将插入目的基因片段的入门载体与带有绿色荧光蛋白(GFP)标签的shRNA真核表达载体pDS_hpEy进行LR重组反应,完成三个TGF-β1shRNA表达载体的构建,分别命名为pDS_Ta,pDS_Tb和pDS_Tc。经测序确认后,转染小鼠成纤维细胞(NIH/3T3),筛选稳定表达的细胞克隆,以RT-PCR及Westem blot方法检测转染后TGF-β1mRNA和蛋白表达。结果:RT-PCR和Western blot显示pDS_Tc可明显下调NIH/313细胞TGF-β1的mRNA和蛋白表达,mRNA下调约为70%,蛋白表达减少约65%。结论:GFP标签TGF-β1shRNA表达载体能够阻断TGF-β1基因表达,可作为研究TGF-β1调控血管发育机制的一个工具,为阐明TGF-β1信号传导通路奠定基础。  相似文献   

4.
There are multiple mechanisms by which cells evade TGF-β-mediated growth inhibitory effects. In this report, we describe a novel mechanism by which cells become resistant to TGF-β-mediated growth suppression. Although having all the components of the TGF-β signaling pathway, different cell lines, RL, HaCaT, and BJAB, have different sensitivities toward TGF-β-induced growth suppression. The TGF-β resistance of RL, a B-cell lymphoma cell line, was due to ligand-induced downregulation of TGF-β receptor II (TβRII) and only transient TGF-β induced nuclear translocation of Smad2 and Smad3. With low-dose phorbol 12-myristate 13-acetate (PMA) or anti-IgM treatment, TGF-β sensitivity was restored by stabilizing TβRII expression and sustaining TGF-β signaling. The MEK inhibitor, U0126, blocked both PMA- and anti-IgM-induced upregulation of TβRII. In HaCaT and BJAB, two TGF-β-sensitive cell lines, which had higher basal levels of phospho-MEK and TβRII compared with RL, U0126 induced downregulation of TβRII and blocked subsequent TGF-β signaling. Similar results were also obtained with normal B cells, where MEK1 inhibitor downregulated TβRII and subsequent TGF-β signaling. Constitutively active MEK1, but not constitutively active ERK2, induced upregulation of TβRII. Furthermore, TβRII physically interacted with the constitutively active MEK1, but not with wild-type MEK1, indicating involvement of active MEK1 in stabilizing TβRII. Collectively, our data suggest a novel mechanism for MEK1 in regulating the sensitivity to TGF-β signaling by stabilizing TβRII.  相似文献   

5.
Cancer cells undergo epithelial-mesenchymal transition (EMT) during invasion and metastasis. Although transforming growth factor-β (TGF-β) and pro-inflammatory cytokines have been implicated in EMT, the underlying molecular mechanisms remain to be elucidated. Here, we studied the effects of proinflammatory cytokines derived from the mouse macrophage cell line RAW 264.7 on TGF-β-induced EMT in A549 lung cancer cells. Co-culture and treatment with conditioned medium of RAW 264.7 cells enhanced a subset of TGF-β-induced EMT phenotypes in A549 cells, including changes in cell morphology and induction of mesenchymal marker expression. These effects were increased by the treatment of RAW 264.7 cells with lipopolysaccharide, which also induced the expression of various proinflammatory cytokines, including TNF-α and IL-1β. The effects of conditioned medium of RAW 264.7 cells were partially inhibited by a TNF-α neutralizing antibody. Dehydroxy methyl epoxyquinomicin, a selective inhibitor of NFκB, partially inhibited the enhancement of fibronectin expression by TGF-β, TNF-α, and IL-1β, but not of N-cadherin expression. Effects of other pharmacological inhibitors also suggested complex regulatory mechanisms of the TGF-β-induced EMT phenotype by TNF-α stimulation. These findings provide direct evidence of the effects of RAW 264.7-derived TNF-α on TGF-β-induced EMT in A549 cells, which is transduced in part by NFκB signalling.  相似文献   

6.
Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions.  相似文献   

7.
8.
9.
Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.  相似文献   

10.
Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.  相似文献   

11.
Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β's in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant's, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β1 (spermatocytes and round spermatids) and TGF-β2 (round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β1 and TGF-β2 neutralizing antibody.These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β's. Following secretion, the TGF-β's are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β's may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function.  相似文献   

12.
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.  相似文献   

13.
We have previously shown that TGF-β1 exerts a bifunctional effect on RAC proliferation. Added to quiescent cultures, it inhibits the entry of G0/G1 cells into S phase whereas in S phase synchronized populations, it stimulates the DNA replication rate with a delayed G2+ M phase and a subsequent transient increase of cell number. As TGF-β2 and β3 isoforms are also expressed in bone and cartilage tissues, it was of interest to study their effect on RAC proliferation, in comparison to that of TGF-β1. Using cell counting and tritiated thymidine incorporation, we found that all the TGF-βs used here induced an increase of RAC proliferation rate occurring between 24 and 48 h of exposure. TGF-β2 appeared as the most efficient form as judged from the maximum of thymidine labelling. However, TGF-β3 induced an increase of cell number slightly higher than both TGF-β1 and TGF-β2 (+30% versus 20% for TGF-β1 and β2). TGF-β2 and β3 were able to stimulate the DNA replication rate as previously demonstrated for TGF-β1. However, the effect occurred later for TGF-β2 and β3 (12 h) than for TGF-β1 (6 h). This was confirmed by flow cytometric analysis of DNA content. In addition, immunodetection by flow cytometry demonstrated that all TGF-β isoforms enhanced endogenous expression of TGF-β-related peptides. The effect was shown to be associated with the cell cycle S phase and was greater for TGF-β3 than for TGF-β1 and β2. These findings suggest that TGF-βs could act on RAC functions via autocrine and paracrine ways. Taken together, these data indicate that TGF-βs may modulate proliferation of articular chondrocytes and therefore could play a role in the activation of these cells in the early stages of osteoarthritis.  相似文献   

14.
Increasing evidence suggests that transforming growth factor-β (TGF-β) is involved in bone formation during remodeling. Using a recently cloned human leukemic cell line (FLG 29.1 cells) we demonstrate that these cells synthesize and secrete TGF-β1 and that exogenous or autocrine TGF-β1 can induce the same features of osteoclastic-like cells, exerting its effects through the binding to TGF-β specific receptors. Scatchard analysis of 125I-labeled TGF-β1 to FLG 29.1 cells revealed the presence of a single high affinity binding site with a Kd value of ~25 pM and a binding capacity of ~900 sites/cell. Affinity labeling experiments showed that FLG 29.1 cells express type I and type II TGF-β receptors. Stimulation of FLG 29.1 cells with low TGF-β1 doses reduced cell proliferation and increased cell adhesion and tartrate resistant acid phosphatase (TRAcP) activity. Pretreatment of FLG 29.1 cells with TGF-β1 caused a significant and dose-dependent response to calcitonin. Northern blot of total mRNA and analysis of the conditioned media (CM) showed that TGF-β1 was synthesized by FLG 29.1 cells. TPA treatment, which induces partial differentiation of these cells, markedly increased TGF-β1 mRNA expression and growth factor release. The majority of TGF-β1 secreted by TPA-treated cells was in its latent form. However, anti-TGF-β antibodies inhibited TGF-β1 and TPA-induced growth inhibition, calcitonin responsiveness, and TRAcP activity, suggesting that the TPA effect is mediated in part by autocrine TGF-β1 and indicating that the cells can activate and respond to the TGF-β that they secrete. These findings support a potential autocrine role for TGF-β1 in osteoclast differentiation. © 1994 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-β1, a study was performed to analyze the effect of TGF-β1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-β1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-β1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-β1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-β1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-α. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-β1. These results indicate that TGF-β1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.  相似文献   

18.
This study examines the mechanism by which TGF-β1, an important mediator of cell growth and differentiation, blocks the differentiation of normal rat diploid fetal osteoblasts in vitro. We have established that the inability for pre-osteoblasts to differentiate is associated with changes in the expression of cell growth, matrix forming, and bone related genes. These include histone, jun B, c-fos, collagen, fibronectin, osteocalcin, alkaline phosphatase, and osteopontin. Morphologically, the TGF-β1-treated osteoblasts exhibit an elongated, spread shape as opposed to the characteristic cuboidal appearance during the early stages of growth. This is followed by a decrease in the number of bone nodules formed and the amount of calcium deposition. These effects on differentiation can occur without dramatic changes in cell growth if TGF-β1 is given for a short time early in the proliferative phase. However, continuous exposure to TGF-β1 leads to a bifunctional growth response from a negative effect during the proliferative phase to a positive growth effect during the later matrix maturation and mineralization phases of the osteoblast developmental sequence. Extracellular matrix genes, fibronectin, osteopontin and α1(I) collagen, are altered in their expression pattern which may provide an aberrant matrix environment for mineralization and osteoblast maturation and potentiate the TGF-β1 response throughout the course of osteoblast differentiation. The initiation of a TGF-β1 effect on cell growth and differentiation is restricted to the proliferative phase of the culture before the cells express the mature osteoblastic phenotype. Second passage cells that are accelerated to differentiate by the addition of dexamethasone or by seeding cultures at a high density are refractory to TGF-β1. These in vitro results indicate that TGF-β1 exerts irreversible effects at a specific stage of osteoblast phenotype development resulting in a potent inhibition of osteoblast differentiation at concentrations from 0.1 ng/ml. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The ability of TGF-β1 (transforming growth factor-beta 1) to suppress growth factor induced proliferation of many cell types in vitro is well documented; however, TGF-β1 increases within a similar time frame as the hepatocyte mitogens HGF (hepatocyte growth factor), EGF (epidermal growth factor), and TGF-α(transforming growth factor-alpha) prior to hepatocyte proliferation during liver regeneration. This has raised the issue that TGF-β1 may have effects on hepatocytes additional to mito-inhibition and that these effects may be relevant to the regenerative process. To this end, we examined the effect of TGF-β1 on both the mitogenesis and the motility of growth factor stimulated primary rat hepatocytes and the hepatoblastoma cell line HepG2 in vitro. TGF-β1 significantly enhanced the chemotactic motility of EGF or TGF-α, and not HGF, stimulated hepatocytes on a collagen I substratum. TGF-β1 was not chemotactic when added alone and decreased the DNA synthesis of all hepatocyte cultures to near control levels. HepG2 cells were chemotactic toward HGF, EGF, and TGF-β1 alone and displayed an additive chemotactic response when TGF-β1 was added to either HGF or EGF. Additionally, HepG2 cells were refractory to the growth stimulatory effects of HGF or EGF and the growth inhibitory effects of TGF-β1. Hepatocytes plated onto other collagen-containing substrates (collagen IV, Matrigel, or ECL, an entactin-collagen IV-laminin matrix), but not on fibronectin or laminin alone, also displayed enhanced EGF stimulated motility by TGF-β1. The data indicate that an additional, novel role for TGF-β1 during liver tissue remodeling following PHx may include the synergistic enhancement EGF stimulated hepatocyte motility responses, and this enhancement is observed only on collagen-containing extra-cellular matrices. J Cell Physiol 170:57–68, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

20.
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-β1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-β1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-β1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-β1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-β1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-β1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-β1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-β1 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号