首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eucalypt saplings in north Australian savannas commonly die back, sometimes to ground level, during the 5 months of the long dry season. Water potentials are lower in saplings than large trees during the dry season, and we hypothesized that low water potentials may lead to high levels of xylem embolism and consequent death of branches and whole shoots. As the dry season progressed, hydraulic conductance of terminal branches decreased by 50% in Eucalyptus tetrodonta but not in Eucalyptus miniata saplings. Hydraulic conductance per leaf area decreased seasonally by 34% in E. tetrodonta branches. These decreases may be associated with the loss of leaves recorded from E. tetrodonta but not E. miniata branches. We modelled the effect of sequential loss of parallel resistors, representing petioles on a branch. This showed there is a non-linear decrease in flow as basal resistors are lost, which can lead to a decrease in mean flow per resistor due to increased mean path-length. Thus the observed loss of basal leaves, together with xylem embolism, probably contributed to the seasonal loss of hydraulic conductance in E. tetrodonta saplings. Loss of hydraulic conductance due to xylem embolism was generally low ( < 15%) in both species, and the seasonal increase in embolism could not fully account for the decline in hydraulic conductance of E. tetrodonta branches. There was little evidence that branch and shoot death was caused by these levels of embolism. Developing an embolism vulnerability curve for species with long vessels is problematic and this issue is discussed.  相似文献   

2.
Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks–previously unrecognized as contributors to the ashbed effect–probably help to maintain the rain forest–savanna boundary.  相似文献   

3.
The history of isolated patches of monsoon rainforest within large tracts of Eucalyptus savanna is poorly understood because of the scarcity of reliable palaeoecological records in the Australian monsoon tropics. Elsewhere in the world, the ratio of the stable isotopes 13C to 12C (δ13C) in soil organic matter has shed light on the dynamics of rainforest–savanna boundaries because tropical grasses with the C4 photosynthetic pathway have a distinct δ13C signature (–17 to –9‰) compared with that of woody plants with the C3 photosynthetic pathway (–32 to –22‰). In order to determine the magnitude of the variation in δ13C, unreplicated soil profiles were sampled beneath different vegetation types on three boundaries between Eucalyptus savanna and rainforest that were both growing on Tertiary age laterite parent material. Replicated (n = 3) soil profiles, which were also derived from Tertiary age laterite, were sampled from beneath: (i) dense stands of African grasses within a frequently burnt Eucalyptus savanna; and within the same long unburnt Eucalyptus savanna, (ii) patches of African and natives grasses and (iii) clumps of Acacia trees. The strongly negative δ13C values of soil organic matter derived from the frequently burnt and long unburnt grassy understoreys in the Eucalyptus savannas showed that a considerable amount of the soil carbon was derived from C3 (woody) species despite the presence of a ground layer dominated by C4 grasses. However, a feature of these data was the considerable variability among the three ‘replicate’ profiles. The surface soil samples from beneath three clumps of Acacia trees in the unburnt Eucalyptus savanna had much less variable δ13C values and were similar to two of the three monsoon rainforests sampled. The pattern of δ13C values from unreplicated soil profiles from different vegetation types across three rainforest boundaries was also very variable and not always obviously related the known disturbance history of the extant vegetation. Given the considerable variability within and between vegetation types with contrasting disturbance histories, it is concluded that the use of carbon stable isotopes to advance understanding of the dynamics of rainforest and Eucalyptus savanna boundaries will require further development, such as determination of the 14C age and δ13C values of different soil carbon fractions.  相似文献   

4.
Abstract Seventy-three per cent of dry rainforest in Forty Mile Scrub National Park and large areas in adjacent savanna woodland have more than 5000 individuals per ha of lantana (Lantana camara L.). Transect studies in dry rainforest and savanna woodland across varying intensities of lantana infestation show a negative correlation between the density of lantana and tree cover in rainforest. The density of pig rooting is very high in areas of the dry rainforest on deep soil that was not heavily infested with lantana. It is suggested that the digging activities of these animals may cause tree death and subsequent increased light penetration, which favours lantana. The species richness of the dry rainforest declines as the density of lantana increases. However, the saplings and seedlings and the soil seed bank of dry rainforest and savanna woodland tree species have comparable densities in heavy and light lantana infestations. The proliferation of lantana results in the build up of heavy fuel loads across the boundary of dry rainforest and savanna woodland. Recent fires have killed the canopy trees in a large area of dry rainforest within the Park. Active management of Forty Mile Scrub National Park is urgent and some initiatives are suggested.  相似文献   

5.
G. D. COOK 《Austral ecology》1991,16(4):537-540
The effect of four fire regimens (early dry season annual, late dry season annual, early dry season biennial, unburnt) on the numbers of epiphytic orchids in a savanna community in Kakadu National Park was investigated. These fire regimens had been maintained on I ha plots for 16 years. Two species of epiphytic orchid were present — Cymbidium canaliculatum and Dendrobium affine. The numbers of Cymbidium plants were insufficient to enable statistical analysis, but plants were present in the unburnt, early annual and early biennial fire treatments. Dendrobium occurred in substantial numbers irrespective of fire treatment, but the extent of colonization of all available host trees was greater in the unburnt than the burnt treatments. The lower numbers of Dendrobium plants in burnt treatments was due to a lower proportion of potential host trees being colonized and a lower number of orchids on each colonized tree. The proportion of small trees colonized was markedly lower in burnt treatments. Frequent fires late in the dry season may prevent recruitment of the main host species. Eucalyptus tectifica. The survival of orchids despite frequent fires depended on the availability of relatively protected sites for colonization and the ability of the orchids to withstand some fire damage.  相似文献   

6.
Abstract This study investigated the effect of three experimental fire regimes on the fecundity, ovule development and seedfall of two common wet-dry tropical savanna eucalypts, Eucalyptus minima and Eucalyptus tetrodonta, in northern Australia. Both species flower early in the dry season and ovule development occurs during the dry season. This coincides with a period of frequent fires. The three fire regimes considered were applied for four years between 1990 and 1994. These regimes were (i) Unburnt, (ii) Early, fires lit early in the dry season, and (iii) Late, fires lit late in the dry season. The treatments were applied to nine catchments (15–20 km2) with each fire regime replicated three times. Fire intensity typically increases as the dry season proceeds. Therefore, early dry season fires generally differ from late dry season fires in both their intensity and their timing in relation to the reproductive phenology of the eucalypts. Late dry season burning significantly reduced the fecundity of both species, whereas Early burning had no significant effect. Ovule success was significantly reduced by the Early burning for both species. The Late burning significantly reduced ovule success in E. tetrodonta, but not in E. miniata. The results suggest that fire intensity and fire timing may both be important determinants of seed supply. Fire intensity may be a determinant of fecundity, whereas fire timing in relation to the reproduction phenology may have a significant impact on ovule survival. Both fire regimes resulted in a substantial reduction in seed supply compared with the Unburnt treatment. This may have a significant impact on seedling regeneration of these tropical savanna eucalypts.  相似文献   

7.
Fire regimes are changing throughout the world. Changed fire patterns across northern Australian savannas have been proposed as a factor contributing to recent declines of small‐ and medium‐sized mammals. Despite this, few studies have examined the mechanisms that underpin how species use habitat in fire‐affected landscapes. We determined the habitats and resources important to the declining golden‐backed tree‐rat (Mesembriomys macrurus) in landscapes partially burnt by recent intense fire. We aimed to (i) compare the relative use of rainforest and savanna habitats; (ii) examine the effect of fire history on use of savanna habitats; and (iii) identify key foraging and denning resources. Habitat selection was examined by comparing the availability of eight habitat types around real (used) and generated (available) location points. Individuals used a range of habitats, but consistently selected long unburnt rainforest in preference to recently burnt savanna (1–12 months post‐fire); however, recently burnt savanna was used in preference to long unburnt savanna. Tree‐rats foraged in Terminalia hadleyana, Planchonia rupestris, Celtis philippensis and Owenia vernicosa, tree species that are found in a variety of habitat types. Individuals used a range of den sites, including cliffs, trees, logs, scree and stags found throughout the study area. Although multiple factors may have led to the decline of Mes. macrurus across its range, these results are consistent with the idea that changes in the savanna structure as a consequence of contemporary fire patterns could also have a role. The continued persistence of Mes. macrurus in the northwest Kimberley may be supported by land management strategies that conserve fruiting and hollow‐bearing trees, and maintain the availability of fire‐sensitive vegetation types.  相似文献   

8.
Aim To examine the extent to which succession from tropical savanna to rain forest in the long‐term absence of fire is matched by successional changes in ant communities. This is done by describing ant community responses to 23 years of fire exclusion in a northern Australian tropical savanna, with a particular focus on the extent of colonization by specialist rain forest taxa. Location Solar Village, near Darwin in Australia's Northern Territory. Methods Ants were sampled within 12 plots located inside (‘unburnt’– protected from fire for 23 years) and outside (burnt every 1–2 years) Solar Village in ridge and slope habitat dominated by Eucalyptus spp. The litter, ground‐foraging and arboreal faunas were sampled separately, using Berlese funnels, unbaited pitfall traps and baited pitfall traps attached to tree trunks, respectively. Each species was assigned a forest‐association score ranging from 0 (open savanna species) to 3 (specialist forest species) based on their known habitat preferences in the region. Results A total of 85 ant species from 35 genera were recorded, with multivariate analysis demonstrating distinct litter, ground and arboreal communities. Ant communities also varied substantially with topographic position, which interacted strongly with fire exclusion. A total of 72 species were recorded in burnt habitat, compared with only 45 in unburnt, and the number of ant species records was also about twice as high in burnt compared with unburnt habitat. Fire exclusion has resulted in a dramatic increase in forest‐associated taxa (those occurring in forest and denser, but rarely open, savanna), with such species representing 51% of species records in unburnt habitat compared with 19% in burnt. However, only five specialist forest species were recorded, representing < 1% of total ant records. Main conclusions Fire exclusion at Solar Village has markedly increased the prevalence of forest‐associated ant species, but has led to only very minor incursions by specialist rain forest ant taxa. These responses match very closely those of the vegetation.  相似文献   

9.
Abstract Tropical savannas and rainforests contrast in their flammability and the fire resilience of their associated species. While savanna species generally exhibit high resilience to burning, there is much debate about the fire resilience of forest‐associated species, and the persistence of forest patches in a flammable savanna matrix. Where fire has been excluded, savanna tends on a trajectory towards forest, with an increase in forest‐associated plants and animal species. This study tested the idea that given the high proportion of forest‐associated taxa in long‐unburnt savanna, the fauna of these areas would be expected to exhibit less resilience to fire than the fauna in frequently burnt savannas. The study investigated the immediate and short‐term effects on ant assemblages of re‐introducing fire into long‐unburnt savanna in northern Australia. The ant fauna exhibited high resistance to fires, with no significant short‐term change in mean abundance or species richness; instead, seasonality had a far stronger influence on overall ant activity. Fire caused dramatic declines in dominance of the patchily distributed forest‐associated species Oecophylla smaragdina and Papyrius sp., but had no effect on overall dominance by open savanna species of Iridomyrmex. Dominance by Iridomyrmex pallidus declined, but this was compensated for by increases in I. reburrus, while two other species of Iridomyrmex showed no change. This indicates a high level of functional redundancy among dominant species of Iridomyrmex, which universally dominate open savanna communities, but not of dominant forest‐associated species. Overall, our findings demonstrate a high degree of fire‐resilience of the long‐unburnt savanna ant fauna. Despite the occurrence of forest‐associated species, the high proportion of savanna species persisting in this habitat means that long‐unburnt savanna retains the general response characteristics of frequently burnt savanna.  相似文献   

10.
Abstract Soil moisture was augmented experimentally during two successive dry seasons and the intervening wet season in a humid tropical savanna in Darwin, northern Australia. Leaf phenology was monitored in four common tree species Termmalia ferdinandiana and Planchonia careya (both deciduous species), and Eucalyptus miniata and Eucalyptus tetrodonta (both evergreen species). Irrigation produced consistently significant effects in only T. ferdinandiana. In this species leaf-flush was significantly earlier, canopy decline and leaf-fall were significantly later and the attainment of full canopy was earlier in irrigated compared with non-irrigated trees. Litterfall, and the seasonal patterns of contraction and expansion of stems (a measure of stem water status or storage) were not significantly affected by irrigation in any species. Leaf longevity in the deciduous species was 6–8 months; some eucalypt leaves lived for approximately 1 year, but none lived longer than 18 months. Irrigation had relatively little effect on leaf longevity. While variation in soil moisture is a potentially important cue to both leaf-fall and leaf-flush, stem water status and climatic factors such as vapour pressure deficit may also be important climatic cues to phenological behaviour.  相似文献   

11.
Abstract Following a wildfire in 17–25‐year‐old regrowth karri (Eucalyptus diversicolor) forest in the southwest of Western Australia, plots were established in burnt and similarly aged unburnt forest to monitor the fruiting of macrofungi. Thirty‐six plots on 10 sites (five burnt, five unburnt) were surveyed over a 5‐year period. Plots were surveyed every 2 weeks in the macrofungal fruiting season (April to October) and monthly for the remainder of each year. A total of 332 species were recorded. Fire did not impact significantly on mean species richness. However, a distinct mycoflora was recorded on burnt sites, and species composition on burnt sites changed substantially for each year following the fire and after 5 years was still different from that on unburnt sites. Nineteen percent of species recorded were regarded as being present as a direct result of the fire. The study also demonstrated the variable nature of macrofungal sporophore production in the absence of disturbance and the importance of regular sampling. Five distinct succession groups of post‐fire fungi were recognized. The adaptive traits of post‐fire fungi in relation to fire and the management of fire for macrofungal diversity are discussed.  相似文献   

12.
The vegetation of Kings Park, near the centre of Perth, Western Australia, once had an overstorey of Eucalyptus marginata (jarrah) or Eucalyptus gomphocephala (tuart), and many trees still remain in the bushland parts of the Park. Avenues and roadsides have been planted with eastern Australian species, including Eucalyptus cladocalyx (sugar gum) and Eucalyptus botryoides (southern mahogany), both of which have become invasive. The present study examined the effect of a recent burn on the level of herbivory on these native and exotic eucalypts. Leaf damage, shoot extension and number of new leaves were measured on tagged shoots of saplings of each tree species in unburnt and burnt areas over an 8‐month period. Leaf macronutrient levels were quantified and the number of arthropods on saplings was measured at the end of the recording period by chemical knockdown. Leaf macronutrients were mostly higher in all four species in the burnt area, and this was associated with generally higher numbers of canopy arthropods and greater levels of leaf damage. It is suggested that the pulse of soil nutrients after the fire resulted in more nutrient‐rich foliage, which in turn was more palatable to arthropods. The resulting high levels of herbivory possibly led to reduced shoot extension of E. gomphocephala, E. botryoides and, to a lesser extent, E. cladocalyx. This acts as a negative feedback mechanism that lessens the tendency for lush, post‐fire regrowth to outcompete other species of plants. There was no consistent difference in the levels of the various types of leaf damage or of arthropods on the native and the exotic eucalypts, suggesting that freedom from herbivory is not contributing to the invasiveness of the two exotic species.  相似文献   

13.
Acacia species in arid environments are thought to only establish in years of above-average rainfall, so should exhibit cohorted or pulsed recruitment. I studied population demography of Acacia erioloba Meyer in semi-arid savanna in the Kimberley area (mean annual precipitation = 425 ± 132 mm), South Africa, to establish whether they recruit episodically. This species was found to have a sapling bank at the sites, indicating that even though cohorted recruitment probably occurs, it is not the primary factor limiting recruitment to larger size classes. A. erioloba saplings given supplementary water and protection from herbivory showed significantly less height growth than saplings given water but not protected from herbivores, and grass within exclusion plots was taller and denser than outside of exclusion plots. The generalized linear model, although finding a significant difference between watered and protected and watered and unprotected saplings, explained only 16% of variation in growth, demonstrating the importance of factors other than competition from grass when rainfall is above-average. Average height increase across all treatments for a growing season was small (43.1 ± 30.81 mm), suggesting most investment is belowground. A. erioloba sapling below surface stem diameter correlated positively with aboveground growth, indicating larger, and presumably older, individuals grow faster. When grass was removed around saplings, growth rates were not significantly greater than for saplings surrounded by grass, over a growing season. Thus, in these study sites, pulsed events allow seedlings to establish, and then saplings slowly accumulate over many growing seasons within the grass sward, owing to slow aboveground growth combined with competition from grass in absence of grazers. Release events, e.g., heavy grazing combined with good rainfall, may allow mass release, giving the impression of cohorted or pulsed recruitment.  相似文献   

14.
Abstract The spatial pattern of dry rainforest and savanna tree species was analysed in a 1.56‐ha plot within an unburnt eucalypt savanna woodland in north Queensland, Australia. Rainforest colonization constituted only 1.3% of the basal area and mostly consisted of individuals less than 3 m high. The distribution of rainforest trees was highly clumped around the large savanna eucalypt trees. Ecological mechanisms generating the clumped distribution are discussed in light of evidence from this study and the literature. Herbaceous biomass was not reduced under trees, suggesting that relief from grass competition has not favoured rainforest colonization under tree crowns. Edaphic facilitation through nutrient enrichment under savanna tree crowns appears to be only minor on the moderate fertility soils of the area. The highly clumped pattern of colonizing dry rainforest may be a consequence of seeds dropped from birds roosting in savanna trees.  相似文献   

15.
Abstract The native annual Sorghum populations of the Australian wet-dry tropics are highly resilient to dry season fires. During the early wet season, however, fires that occur after the new grass population has emerged can cause catastrophic population crashes. We examined savanna plots that had been burnt in this way, and compared them with adjacent unburnt plots. We found that Sorghum densities in the burnt plots were lower on average by a factor of 10, but that some fires had reduced the density only to one-third of the unburnt plots. It is not clear whether these differences relate directly to site or seasonal factors, or to differences in the way the burning was carried out. Other vegetation components responded to the fires differently: forbs (dicotyledonous herbs) increased in cover, while perennial grasses, woody plants, and overall species richness, were not significantly affected. The amount of leaf litter declined. A population model for Sorghum based on the demography of unburnt populations predicted that they should recover from a wet season burn, taking 7–16 years to return to normal densities. However, the actual field populations did not seem to be recovering, suggesting that wet season fires not only lower densities, but may also fundamentally change population processes in these annual grasses.  相似文献   

16.
Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non‐native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m a.s.l.; precipitation approximately 2770 mm yr?1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum‐dominated herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using non‐parametric H‐tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger‐dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure.  相似文献   

17.
The vegetation of shallow depressions on Ivorian granite inselbergs was studied along a gradient from the savanna zone in the north to the rainforest zone in the south of the country. Short-term inundation and prolonged drought are typical features of this habitat. In total, 64 taxa belonging to 25 families were recorded, with the Poaceae, Cyperaceae and Fabaceae accounting for the greatest proportion of species. Annuals represent the predominant life form and comprise nearly two thirds of all species recorded. DCA ordination of the sample plots illustrates that diversity decreases from north to south, and is accompanied by a gradual transition in the ambient vegetation from savanna to rainforest. This decrease is in marked contrast with diversity of surrounding vegetation types. In the drier northern area, it appears as if the less favourable environmental conditions prevent a state of community equilibrium being attained in the shallow depressions. This enables weak competitors to co-exist along with more vigorous species, which, in the south of the country, form species-poor stands. Furthermore, the fact that inselbergs in the rainforest zone are more isolated enhances the probability of extinction of less competitive associates.  相似文献   

18.
Rainfall, fire and competition are emphasized as determinants of the density and basal area of woody vegetation in savanna. The semi‐arid savannas of Australia have substantial multi‐year rainfall deficits and insufficient grass fuel to carry annual fire in contrast to the mesic savannas in more northern regions. This study investigates the influence of rainfall deficit and excess, fire and woody competition on the population dynamics of a dominant tree in a semi‐arid savanna. All individuals of Eucalyptus melanophloia were mapped and monitored in three, 1‐ha plots over an 8.5 year period encompassing wet and dry periods. The plots were unburnt, burnt once and burnt twice. A competition index incorporating the size and distance of neighbours to target individuals was determined. Supplementary studies examined seedling recruitment and the transition of juvenile trees into the sapling layer. Mortality of burnt seedlings was related to lignotuber area but the majority of seedlings are fire resistant within 12 months of germination. Most of the juveniles (≤1 cm dbh) of E. melanophloia either died in the dry period or persisted as juveniles throughout 8.5 years of monitoring. Mortality of juveniles was positively related to woody competition and was higher in the dry period than the wet period. The transition of juveniles to a larger size class occurred at extremely low rates, and a subsidiary study along a clearing boundary suggests release from woody competition allows transition into the sapling layer. From three fires the highest proportion of saplings (1–10 cm dbh) reduced to juveniles was only 5.6% suggesting rates of ‘top‐kill’ of E. melanophloia as a result of fire are relatively low. Girth growth was enhanced in wet years, particularly for larger trees (>10 cm dbh), but all trees regardless of size or woody competition levels are vulnerable to drought‐induced mortality. Overall the results suggest that variations in rainfall, especially drought‐induced mortality, have a much stronger influence on the tree demographics of E. melanophloia in a semi‐arid savanna of north‐eastern Australia than fire.  相似文献   

19.
The small and isolated rainforest patches that are embedded in the predominantly savanna landscape of Australia’s monsoonal tropics support a highly distinctive and biogeographically significant ant fauna. This fauna features shade-tolerant taxa of Indo-Malayan origin, in contrast to the arid-adapted, endemic Australian taxa that dominate the surrounding savanna. The Tiwi Islands north of Darwin in the Northern Territory (NT) receive the highest mean annual rainfall (up to 2,000 mm) in monsoonal Australia, and have a particularly extensive rainforest estate that has been poorly surveyed for invertebrates. Here we describe results from intensive ant surveys at 17 sites representing the full range of Tiwi rainforest types, using subterranean traps, Winkler sacs, pitfall traps and arboreal traps, supplemented by opportunistic hand collections. Our surveys yielded a total of 87 species from 37 genera, with the richest genera being Pheidole (9 species collected), Polyrhachis (8), Camponotus (5), Rhytidoponera (5) and Strumigenys (5). The overall structure and diversity of the Tiwi rainforest fauna is comparable to that of rainforest ant faunas on the Australian mainland. However, the species have exceptional biogeographic significance. At least 21 species across 12 genera have apparently never previously been collected, three species from subcoastal northeastern Australia are recorded for the first time in the NT, and the genera Mesoponera and Onychomyrmex are documented for the first time in the NT. There was a very low incidence of exotic species, which further highlights the conservation values of this remarkable fauna.  相似文献   

20.
A numerical floristic analysis of samples across a monsoon forest-savanna boundary, from an area that had been actively protected from fire for 15 years, at Weipa, northern Australia, revealed three communities: (i) a monsoon forest with a low closed canopy composed mainly of tree species with extra-Australian tropical affinities and a sparse ground layer; (ii) an ecotone with a distinct closed microphyll shrub layer beneath the open canopy of savanna trees; and (iii) a savanna dominated by Eucalyptus tetrodonta. The development of the ecotone has occurred since fire protection and is of limited extent within the fire protected block. The monsoon forest occurred on soils with significantly higher concentrations of bauxitic pisoliths than the other two communities. Soils under the monsoon forest had significantly higher concentrations of total K, S, C, N, exchangeable K and Ca, and higher pH and electrical conductivity than for soils of either of the other communities. A positive relationship between woody basal area and concentrations of surface soil total P, N, C, exchangeable Ca, CEC and gravel was detected across a 20 m transect from the ecotone community into the savanna. The invasion of monsoon forest seedlings was greatest in the ecotone, with few occurring in the savanna. It appears that the expansion of the monsoon forest requires the development of a layer of shrubs. The mechanism of this facilitation is unclear, although the possible role of nutrient enrichment by the shrubs requires further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号