首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypotheses of evolutionary relationships among the Australian wild perennial relatives of soybean (Glycine subgenus Glycine) are based largely on patterns of meiotic pairing in intra- and interspecific experimental hybrids. This evidence has indicated a number of genome groupings within the subgenus but has not resolved most phylogenetic relationships. Restriction-endonuclease site variation of chloroplast DNA (cpDNA) within the perennial subgenus is reported here, representing a sampling of approximately 3% of the approximately 150-kilobase plastome. Seven hundred twenty-one unique restriction sites were compared within Glycine using 29 restriction endonucleases; 157 sites varied within the genus. Distance and parsimony methods using these data yielded congruent results, recognizing the existence of three major groups within subgenus Glycine: the species-rich and geographically diverse A clade consisting of G. canescens and related taxa; the B clade, which includes the stoloniferous species; and the C group, containing two species with distinctive curved pods. These results are in general agreement with hypotheses based on genome analysis; inconsistencies involve the inclusion of genetically divergent taxa such as G. falcata in well-supported plastome clades comprised of otherwise interfertile species. Such findings are not unexpected if crossing barriers are considered to be unique features of such anomalous species, paralleling their often numerous morphological and cpDNA autapomorphies. Consideration of cpDNA divergence within the three major clades of subgenus Glycine indicates that the rate of plastome evolution is uncoupled from rates of morphological or ecological diversification.  相似文献   

2.
The structure of ribosomal DNA ofBrachypodium and several other grass species was investigated using a heterologous rDNA probe from wheat. Several different rDNA families were present among perennial and annual species within the genus. In contrast to the annual species the perennial species exhibited a very low degree of repeat length variation. An extra Eco RI site and a Hin dIII site were observed in the IGS, which distinguishedBrachypodium from other grass genera. The restriction fragment length polymorphism and length variation of the repeat units have taxonomic value withinBrachypodium and are correlated with the classification ofBrachypodium derived from other data.  相似文献   

3.
The temperate annual grass Brachypodium distachyon is a diploid species with a chromosome base number of 5. It is strikingly different from other Eurasian species of the genus, which are perennial and often polyploid, with the diploids typically having base numbers of 8 or 9. Previously, phylogenies indicated that B. distachyon split from the other species early in the evolution of the genus, while its genome sequence revealed that extensive synteny on a chromosomal scale had been maintained with rice, a tropical grass with a base number of 12. Here we show evidence that B. distachyon may have a homoploid origin, involving ancestral interspecific hybridisation, although it does not appear to be a component of any of the perennial Eurasian allopolyploids. Using a cytogenetic approach, we show that dysploidy in Brachypodium has not followed a simple progression.  相似文献   

4.

The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0–7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine–oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine–oak forest zone. The presence of many conspecific diploid–polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

  相似文献   

5.
Leucophyllum is one of the most remarkable endemic genera of North American deserts, with its simultaneous bloom of showy purple flowers. With Eremogeton and probably Capraria it forms part of tribe Leucophylleae. Leucophyllum has 16 species distributed mostly throughout the Chihuahuan and Tehuacán deserts. The three genera were sampled to investigate the phylogenetic relationships among them and to test the monophyly of Leucophyllum, based on plastid DNA (trnL‐F, rps16) and nuclear ribosomal (nr)DNA (internal transcribed spacer) sequences. Bayesian inference and maximum‐likelihood analyses confirmed that tribe Leucophylleae is monophyletic and formed by the three Neotropical genera. Separate (plastid DNA and nrDNA) and combined analyses retrieved Leucophyllum as paraphyletic, with L. mojinense as the sister species to the rest of the species in the tribe and Capraria spp. nested in one of two clades of Leucophyllum. Further monographic work is needed to identify the defining characters and limits of the genera, but we suggest that L. mojinense, with its different vegetative architecture, distinctive flowers and dissimilar distribution could be placed in its own genus. Each of the two clades in Leucophyllum could be considered a genus in its own right, and Capraria and Eremogeton can be recognized as independent genera, as they are at present. Leucophyllum ambiguum, the type species of the genus, belongs to one of the clades so the species of the other could be considered members of a new genus. The only diagnostic character detected at present is a ventricose corolla tube in one of the clades in Leucophyllum and a pressed corolla tube in the other. © 2013 The Linnean Society of London  相似文献   

6.
The genus Leucheria Lag. (Asteraceae Bercht. and J. Presl, tribe Nassauvieae Cass.) comprises 45 species and three infraspecific taxa distributed in the Andean region from southern Chile and Argentina to Peru. Six species are annual herbs. The genus has had a long taxonomic history involving the transference of species described originally under many different genera. The main objectives of this paper were to determine the phylogenetic relationships of species of Leucheria, examine the hypothesis that the ancestor of Leucheria would have originated in a forested habitat and examine the validity of nine morphologically defined evolutionary lines recognized in earlier work on the genus. Additionally we investigated whether the annual species of Leucheria are derived. We extracted DNA from leaf material for 45 taxa (94%) of Leucheria. We used Bayesian inference and plastid and nuclear genes to construct a phylogenetic hypothesis. Results show that Leucheria is monophyletic and is comprised of two main clades. One clade comprises perennial acaulescent/subacaulescent species, all with a solitary capitulum. We recognized three lineages in the second clade comprised of caulescent species that exhibit multiple capitula. Optimization of life-form over the phylogeny showed that five of the six annual species studied are derived in our tree. We conclude that the appearance of the annual habit is associated with the colonization of arid conditions in the winter rainfall coastal desert of northern Chile. Our result shows that species of Leucheria from forested habitats are derived. Discrepancies with previously recognized morphologically defined evolutionary lines were detected.  相似文献   

7.
Complete sequences of the Rrn 18 genes were obtained from 13 strains of the nonphotosynthetic algal genus Polytoma. Phylogenetic analyses showed that these strains formed two clades. One clade shows only modest sequence diversity but is represented by strains collected at widely dispersed sites in Europe and America. The other clade consists of a single isolate from the Canary Islands. Both clades lie well within the extended clade that includes all species of Chlamydomonas for which sequence data are available. The two Polytoma clades are separated from each other by several green species, suggesting that the extant nonphotosynthetic Chlamydomonadaceae arose from photosynthetic ancestors at least twice. These results suggest that nonphotosynthetic mutants are capable of establishing lineages that can spread widely but have a higher probability of extinction than their photosynthetic congeners.  相似文献   

8.
Here we tested whether ‘insular woodiness’, a striking evolutionary pattern that commonly occurs on islands, has also appeared in QTP continental endemics. Parapteropyrum, a monotypic shrubby genus occurring in the central QTP, has been previously placed in the tribe Atraphaxideae of the family Polygonaceae, while all the other woody species of this tribe mainly occur in western and central Asia. We studied sequence variations of nuclear ITS (internal transcribed spacer) and cp (chloroplast) DNA (rbcL and accD) of this genus and the other ten genera. The constructed phylogenies based on ITS, cpDNA or a combination of both datasets, suggest that the woody Parapteropyrum is nested within and most likely evolved from the herbaceous Fagopyrum. We propose that the large-scale uplift of the QTP not only promoted continental species radiation, but also the secondary feature of woodiness in a few herbaceous lineages in response to strong selection pressures, similar to those acting on island flora. In addition, the confirmation of Parapteropyrum within Fagopyrum highlights its potential use as a new, perennial source of buckwheat.  相似文献   

9.
Due in part to its small genome (~350 Mb), Brachypodium distachyon is emerging as a model system for temperate grasses, including important crops like wheat and barley. We present the analysis of 10.9% of the Brachypodium genome based on 64,696 bacterial artificial chromosome (BAC) end sequences (BES). Analysis of repeat DNA content in BES revealed that approximately 11.0% of the genome consists of known repetitive DNA. The vast majority of the Brachypodium repetitive elements are LTR retrotransposons. While Bare-1 retrotransposons are common to wheat and barley, Brachypodium repetitive element sequence-1 (BRES-1), closely related to Bare-1, is also abundant in Brachypodium. Moreover, unique Brachypodium repetitive element sequences identified constitute approximately 7.4% of its genome. Simple sequence repeats from BES were analyzed, and flanking primer sequences for SSR detection potentially useful for genetic mapping are available at . Sequence analyses of BES indicated that approximately 21.2% of the Brachypodium genome represents coding sequence. Furthermore, Brachypodium BES have more significant matches to ESTs from wheat than rice or maize, although these species have similar sizes of EST collections. A phylogenetic analysis based on 335 sequences shared among seven grass species further revealed a closer relationship between Brachypodium and Triticeae than Brachypodium and rice or maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. Huo and G.R. Lazo contributed equally to this work.  相似文献   

10.
The allotetraploid lactucean Microseris scapigera of Australia and New Zealand has presumably arisen in western North America by hybridization between an annual and a perennial diploid species followed by polyploidization and long-distance dispersal. A phylogenetic tree of various North American diploids, based on RFLPs in the nuclear DNA, confirmed the division of the genus into a clade containing the diploid annuals and a clade containing the diploid perennials. Four RFLP markers were shared among all accessions of M. scapigera and all the diploid accessions. Twelve markers found in the outgroup (Uropappus lindleyi) were absent in all Microseris. A cladogram of plants from six populations of M. scapigera based on eight RFLP markers shows a progressive specialization of three clades of two populations each. Two populations without any markers differentiating them from the North American diploids form the basic clade. These consist of plants with an apparently derived morphology that are self-compatible (or agamospermic) and thereby differ from most M. scapigera. Few markers in M. scapigera could be attributed to one or the other parental genome. As yet, we have found only one ITS 1 sequence of the nuclear ribosomal cistrons in M. scapigera. This sequence has features of both parental sequences.  相似文献   

11.
Prolamin and resistance gene families are important in wheat food use and in defense against pathogen attacks, respectively. To better understand the evolution of these multi‐gene families, the DNA sequence of a 2.8‐Mb genomic region, representing an 8.8 cM genetic interval and harboring multiple prolamin and resistance‐like gene families, was analyzed in the diploid grass Aegilops tauschii, the D‐genome donor of bread wheat. Comparison with orthologous regions from rice, Brachypodium, and sorghum showed that the Ae. tauschii region has undergone dramatic changes; it has acquired more than 80 non‐syntenic genes and only 13 ancestral genes are shared among these grass species. These non‐syntenic genes, including prolamin and resistance‐like genes, originated from various genomic regions and likely moved to their present locations via sequence evolution processes involving gene duplication and translocation. Local duplication of non‐syntenic genes contributed significantly to the expansion of gene families. Our analysis indicates that the insertion of prolamin‐related genes occurred prior to the separation of the Brachypodieae and Triticeae lineages. Unlike in Brachypodium, inserted prolamin genes have rapidly evolved and expanded to encode different classes of major seed storage proteins in Triticeae species. Phylogenetic analyses also showed that the multiple insertions of resistance‐like genes and subsequent differential expansion of each R gene family. The high frequency of non‐syntenic genes and rapid local gene evolution correlate with the high recombination rate in the 2.8‐Mb region with nine‐fold higher than the genome‐wide average. Our results demonstrate complex evolutionary dynamics in this agronomically important region of Triticeae species.  相似文献   

12.
The genus Pythium is important in agriculture, since it contains many plant pathogenic species, as well as species that can promote plant growth and some that have biocontrol potential. In South Africa, very little is known about the diversity of Pythium species within agricultural soil, irrigation and hydroponic systems. Therefore, the aim of the study was to characterise a selection of 85 Pythium isolates collected in South Africa from 1991 through to 2007. The isolates were characterised morphologically as well as through sequence and phylogenetic analyses of the internal transcribed spacer regions (ITS) and the 5.8S gene of the nuclear ribosomal DNA. Phylogenetic analyses showed that the isolates represented ten of the 11 published Pythium clades [Lévesque & De Cock, 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research 108: 1363–1383]. Characterisation of isolates in clade D and J suggested that the phylogenetic concept of Pythium acanthicum and Pythium perplexum respectively, needs further investigation in order to enable reliable species identification within these clades. Our phylogenetic analyses of Pythium species in clade B also showed that species with globose sporangia group basal within this clade, and are not dispersed within the clade as previously reported. The 85 South African isolates represented 34 known species, of which 20 species have not been reported previously in South Africa. Additionally, three isolates (PPRI 8428, 8300 and 8418) were identified that may each represent putative new species, Pythium sp. WJB-1 to WJB-3.  相似文献   

13.
14.
Generic boundaries among the genera Cheilosporum, Haliptilon, and Jania—currently referred to the tribe Janieae (Corallinaceae, Corallinales, Rhodophyta)—were reassessed. Phylogenetic relationships among 42 corallinoidean taxa were determined based on 26 anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species of Cheilosporum, seven of Haliptilon, and six of Jania, with five duplicate plants). Results from our approach were consistent with the hypothesis that the tribe Janieae is monophyletic. Our data indicate, however, that Jania and Haliptilon as currently delimited are not monophyletic, and that Cheilosporum should not be recognized as an independent genus within the Janieae. Our data resolved two well‐supported biogeographic clades for the included Janieae, an Indian‐Pacific clade and a temperate North Atlantic clade. Among anatomical characters, reproductive structures reflected the evolution of the Janieae. Based on our results, three genera, Cheilosporum, Haliptilon, and Jania, should be merged into a single genus, with Jania having nomenclatural priority. We therefore propose new combinations where necessary of some species previously included in Cheilosporum and Haliptilon.  相似文献   

15.
Phylogenetic relationships within the genus Leucothoe s.l. (including all eight species) and related taxa of the Gaultherieae, Andromedeae, and Vaccinieae were investigated by a cladistic analysis based on phenotypic (external morphology, anatomy, chromosome number, and secondary chemistry) characters. The parsimony analysis resulted in two most parsimonious trees, both very similar, which show Leucothoe s.l. to be polyphyletic, with its species distributed among three distinct clades. Our results indicate that L. racemosa and L. recurva form a strongly supported clade, which is sister to Chamaedaphne calyculata, and these three species are probably the sister-group of the wintergreen clade (consisting of Gaultheria and Diplycosia). Leucothoe axillaris, L. fontanesiana, L. davisiae, L. griffithiana, and L. keiskei, consistently form a monophyletic group corresponding to Leucothoe s.s., which is probably sister to the remaining members of the tribe Gaultherieae. Leucothoe grayana, the final species traditionally placed in the genus, belongs to neither of these clades and may be sister to Andromeda. Phenotypic characters provide no support for the monophyly of Leucothoe, instead suggesting that it is polyphyletic, in agreement with preliminary DNA-based analyses. Thus, we redefine the genus Leucothoe, placing its species into three genera: 1) Eubotrys (the E. racemosa + E. recurva clade), 2) Leucothoe s.s. (the L. axillaris + L. fontanesiana + L. davisiae + L. griffithiana + L. keiskei clade), and 3) Eubotryoides (containing only E. grayana).  相似文献   

16.
The taxonomic validity of the genus Hydropuntia Montagne (1843) (including Polycavernosa) within the Gracilariaceae (Gracilariales, Rhodophyta) is controversial. Morphological characters that define species of Hydropuntia are said to be variable and to overlap with those of Gracilaria. Here we present a global phylogenetic study of the family based on a Bayesian analysis of a large rbcL DNA sequence dataset indicating that the genus Hydropuntia forms a well supported monophyletic clade within the family, and recognize Hydropuntia as a genus distinct from Gracilaria. We also conducted smaller phylogenetic analyses in which thirty four Hydropuntia rbcL sequences resulted in two major clades within the genus, comprising a Caribbean clade and an Indo‐Pacific clade. Diagnostic reproductive stages that separate these two clades will be illustrated.  相似文献   

17.
DNA sequence data from the low‐copy nuclear genes waxy (GBSSI) and leafy were compared with plastid and ITS sequence data from prior studies to reconstruct phylogenetic relationships in the Wintergreen Group of tribe Gaultherieae (Ericaceae). We conducted phylogenetic analysis with 102 species that includes representatives of all 15 major clades previously identified within the Wintergreen Group and that together span its circum‐Pacific distribution. Results yielded two distinct homeologous copies of waxy for two of the clades, each in widely separated parts of the tree. It also yielded two copies of leafy for one of the clades; only one copy of leafy was found for the other clade, but it was placed in the same major clade as its waxy counterpart and well away from its placement in a prior plastid analysis. A combined four‐locus (waxy, leafy, ITS and plastid data) phylogenetic analysis of all available relevant data placed the copies of each of the clades in two distinct positions in the phylogeny with strong overall statistical support. In combination with evidence from morphology, reproductive biology and cytology, the results suggest that these clades arose through allopolyploid hybridization between lineages deep in the phylogeny but relatively close geographically. This finding confirms previous assumptions that hybridization has played an important role in the evolution of the Gaultherieae.  相似文献   

18.
The first comprehensive phylogenetic study of the wasp tribe Cryptini (Hymenoptera, Ichneumonidae, Cryptinae) is presented, based on 109 morphological characters and molecular data from seven loci. The dataset includes 370 species, 308 of which are from Cryptini, covering 182 of its 250 genera. Results from parsimony and likelihood analyses are generally congruent. The topology has several implications for ichneumonid higher‐level classification. Previous definitions of the Ichneumoniformes clade are supported, though newly including the Microleptinae. The cryptine subtribe Ateleutina is consistently recovered outside of the Cryptini clade and should be treated as a separate subfamily, Ateleutinae stat.n. The tribe Phygadeuontini is shown to be polyphyletic: while most of the sampled taxa were recovered in a single clade, many of its members are more closely related to the Ichneumoninae, Ateleutinae or Cryptini. Pending a more detailed study, the group should be treated as a separate subfamily, Phygadeuontinae stat. rev . The former Hemigastrini are recovered as largely monophyletic but with important exceptions. Hemigaster Brullé is recovered as part of the Phygadeuontini and is transferred to that group. Echthrus Gravenhorst is consistently recovered as part of Cryptini, rendering Aptesini as the correct name for the tribe. The subfamily Cryptinae should be restricted to the tribes Aptesini and Cryptini. Within Cryptini, the results show little support for the current subtribal classification, with most subtribes recovered as polyphyletic. A number of relatively stable clades are identified and discussed, but the relationships among them are weakly supported. Most of these clades are morphologically heterogeneous and building a subtribal classification based on them would be ineffectual; they are therefore treated under the informal designation of genus groups. The results highlight the ubiquity of morphological homoplasy in Cryptini, and provide a framework from which to address further systematic and evolutionary questions on this hyperdiverse group of parasitic wasps.  相似文献   

19.
The lycophyte genus Selaginella alone constitutes the family Selaginellaceae, the largest of the lycophyte families. The genus is estimated to contain 700–800 species distributed on all continents except Antarctica, with highest species diversity in tropical and subtropical regions. The monophyly of Selaginella in this broad sense has rarely been doubted, whereas its intrageneric classification has been notoriously contentious. Previous molecular studies were based on very sparse sampling of Selaginella (up to 62 species) and often used DNA sequence data from one genome. In the present study, DNA sequences of one plastid (rbcL) and one nuclear (ITS) locus from 394 accessions representing approximately 200 species of Selaginella worldwide were used to infer a phylogeny using maximum likelihood, Bayesian inference and maximum parsimony methods. The study identifies strongly supported major clades and well resolves relationships among them. Major results include: (i) six deep‐level clades are discovered representing the deep splits of Selaginella; and (ii) 20 major clades representing 20 major evolutionary lineages are identified, which differ from one another in molecular, macro‐morphological, ecological and spore features, and/or geographical distribution.  相似文献   

20.
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well‐supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号