首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concepts of “founder equivalent” and “founder genome equivalent” are introduced to facilitate analysis of the founding stocks of captive or other populations for which pedigrees are available. The founder equivalents of a population are the number of equally contributing founders that would be expected to produce the same genetic diversity as in the population under study. Unequal genetic contributions by founders decrease the founder equivalents, portend greater inbreeding in future generations than would be necessary, and reflect a greater loss of the genetic diversity initially present in the founders. The number of founder genome equivalents of a population is that number of equally contributing founders with no random loss of founder alleles in descendants that would be expected to produce the same genetic diversity as in the population under study. The number of founder genome equivalents is approximately that number of wild-caught animals that would be needed to obtain the same amount of genetic diversity as is in the descendant captive population. Founder equivalents and founder genome equivalents allow comparison of the genetic merits of adding new wild-caught stock vs. further equalizing founder representations in a captive population.  相似文献   

2.
Awareness of the genealogical relationships between founder animals in captive breeding programs is essential for the selection of mating pairs that maintain genetic diversity. If captive founder relationships are unknown they can be inferred using genetic data from wild populations. Here, we report the results of such an analysis for six Cyclura pinguis (Sauria: Iguanidae) acquired as adults in 1999 by the San Diego Zoo Institute for Conservation Research to begin a captive breeding program for this critically endangered species. The six founder animals were reportedly hatched in captivity from eggs collected on Anegada in 1985. No records exist, however, as to where on Anegada the eggs were collected or from how many nests they originated. To assist determination of genealogical relationships, we genotyped the six captive founders, their first six offspring, and 33 wild adult iguanas from Anegada at 23 informative microsatellite loci. With these data, we estimated allele frequencies among the wild samples and then estimated the relatedness of the captive population. Using likelihood inference, we determined that three closely related pairs exist among the six captive founders and that each pair is not closely related to the other two. In addition, we were able to assign parentage for all six of the founders’ offspring tested, one of which had been previously misdiagnosed. Using the assigned parentage and inferred relatedness of the six founders, we calculated mean kinship for each of the six founders and their five living offspring. Finally, based on the allelic diversity of the wild iguanas sampled, we conclude that the C. pinguis population on Anegada is not excessively inbred; however, further investigation is warranted.  相似文献   

3.
R. Andrew Odum 《Zoo biology》1994,13(2):187-190
When new founders are added to an existing captive population, it is useful to establish a target number of offspring from each of these new founders that will maximize the amount of gene diversity retained in the captive population. This article presents a method for calculating an optimal number of offspring that should be produced from each new founder by considering the retention of founder genomes from dead and non-reproductive founders. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The quantitative assessment of genetic diversity within and between populations is important for decision-making in genetic conservation plans. In our study, we applied the livestock core set method to define the contribution of 15 cattle breeds, 11 of which are Portuguese indigenous cattle breeds, to genetic diversity. In livestock core set theory genetic diversity is defined as the maximum genetic variance that can be obtained in a random-mating population that is bred from the populations present in that core set. Two methods to estimate marker-estimated kinships to obtain the contributions to the core set were used in this study: the weighted log-linear model (WLM) and the weighted log-linear mixed model (WLMM). The breeds that contributed most to diversity in the core set were Holstein-Friesian followed by the Portuguese Mertolenga and Cachena for both WLM and WLMM methods. The ranking of relative contributions of cattle breeds was maintained when we considered only the Portuguese cattle breeds. Furthermore, we were able to identify the marginal contributions and respective losses of diversity for each of the 11 Portuguese cattle breeds when we considered a subset of populations that are not threatened of being lost (the Safe set composed of the four exotic breeds present in this study). When WLM was used losses in genetic diversity ranged from 2.68 to 0.65% while the loss in founder genome equivalents ranged from 37.37 to 8.43% for Mertolenga and Brava de Lide breeds respectively. When WLMM was used losses in genetic diversity and founder genome equivalents were less extreme than for the WLM method, ranging from 1.27 to 0.69 and 26.8 to 12.99 respectively.  相似文献   

5.
Genetic parameters widely used to monitor genetic variation in conservation programmes, such as effective number of founders, founder genome equivalents and effective population size, are interrelated in terms of coancestries and variances of contributions from ancestors to descendants. A new parameter, the effective number of non-founders, is introduced to describe the relation between effective number of founders and founder genome equivalents. Practical recommendations for the maintenance of genetic variation in small captive populations are discussed. To maintain genetic diversity, minimum coancestry among individuals should be sought. This minimizes the variances of contributions from ancestors to descendants in all previous generations. The method of choice of parents and the system of mating should be independent of each other because a clear-cut recommendation cannot be given on the latter.  相似文献   

6.

Background

Dog breeds lose genetic diversity because of high selection pressure. Breeding policies aim to minimize kinship and therefore maintain genetic diversity. However, policies like mean kinship and optimal contributions, might be impractical. Cluster analysis of kinship can elucidate the population structure, since this method divides the population in clusters of related individuals. Kinship-based analyses have been carried out on the entire Icelandic Sheepdog population, a sheep-herding breed.

Results

Analyses showed that despite increasing population size and deliberately transferring dogs, considerable genetic diversity has been lost. When cluster analysis was based on kinships calculated seven generation backwards, as performed in previous studies, results differ markedly from those based on calculations going back to the founder-population, and thus invalidate recommendations based on previous research. When calculated back to the founder-population, kinship-based clustering reveals the distribution of genetic diversity, similarly to strategies using mean kinship.

Conclusion

Although the base population consisted of 36 Icelandic Sheepdog founders, the current diversity is equivalent to that of only 2.2 equally contributing founders with no loss of founder alleles in descendants. The maximum attainable diversity is 4.7, unlikely achievable in a non-supervised breeding population like the Icelandic Sheepdog. Cluster analysis of kinship coefficients can provide a supporting tool to assess the distribution of available genetic diversity for captive population management.  相似文献   

7.
Captive populations of endangered species are managed to preserve genetic diversity and retain reproductive fitness. Minimizing kinship (MK) has been predicted to maximize the retention of gene diversity in pedigreed populations with unequal founder representation. MK was compared with maximum avoidance of inbreeding (MAI) and random choice of parents (RAND) using Drosophila melanogaster. Forty replicate populations of each treatment were initiated with unequal founder representation and managed for four generations. MK retained significantly more gene diversity and allelic diversity based on six microsatellite loci and seven allozyme loci than MAI or RAND. Reproductive fitness under both benign and competitive conditions did not differ significantly among treatments. Of the methods considered, MK is currently the best available for the genetic management of captive populations. Zoo Biol 16:377–389, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
To overcome limitations of diversity measures applied to livestock breeds marker based estimations of kinship within and between populations were proposed. This concept was extended from the single locus consideration to chromosomal segments of a given length in Morgan. Algorithms for the derivation of haplotype kinship were suggested and the behaviour of marker based haplotype kinship was investigated theoretically. In the present study the results of the first practical application of this concept are presented. Full sib pairs of three sub-populations of the Goettingen minipig were genotyped for six chromosome segments. After haplotype reconstruction the haplotypes were compared and mean haplotype kinships were estimated within and between populations. Based on haplotype kinships a distance measure is proposed which is approximatively linear with the number of generations since fission. The haplotype kinship distances, the respective standard errors and the pedigree-based expected values are presented and are shown to reflect the true population history better than distances based on single-locus kinships. However the marker estimated haplotype kinship reveals variable among segments. This leads to high standard errors of the respective distances. Possible reasons for this phenomenon are discussed and a pedigree-based approach to correct for identical haplotypes which are not identical by descent is proposed.  相似文献   

9.
Genetic relatedness among founders is a vitalparameter in the management of captivepopulations as kin structure can have asignificant effect on subsequent populationstructure. Methods for inferring relatednessfrom microsatellite markers have all beendeveloped for natural populations; theirapplicability to captive populations withunknown founder origins needs thereforetesting. We used information derived from 14microsatellites in 177 individuals and Quellerand Goodnight's approach, to estimaterelatedness in the captive bearded vulturepopulation and to test the assumption ofunrelated founders. Mean relatedness of knownparent–offspring, full-sib and half-sib pairswithin the captive population were in agreementwith theoretical distributions. Pairwiserelatedness values among the founders had amean of –0.051 (SE ± 0.007) and theirdistribution did only differ marginally fromthe one found in the natural Pyreneanpopulation. A maximum likelihood approach wasused to determine the likelihood of founderpairs to be as closely related as full-sibs orparent–offspring. These results were combinedwith data from 268 bp mitochondrial DNA controlregion sequences and studbook information. Wecould exclude a close relationship among themajority of the 36 successfully reproducingfounders. Our study therefore removesmanagement concerns about hidden problems ofinbreeding and inbreeding depression. Itdemonstrates the applicability of relatednessestimates based on microsatellite allelefrequency data even in captive populations.Furthermore, we verified studbook informationon the origin of two founders from thePyrenees, and show the value of assignmenttests based on microsatellites for deducingfounder origins and their important role infuture monitoring projects.  相似文献   

10.
The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%.  相似文献   

11.
We combined pedigree data with data derived from 14 microsatellite loci to investigate genetic diversity and its maintenance in the captive source population for the reintroduction of the bearded vulture into the Alps. We found the captive population to be genetically more variable than the largest natural population in Europe, both in terms of mean number of alleles per locus and mean observed and expected heterozygosity. Allelic diversity of the captive population was higher than, and mean heterozygosity measurements were comparable with the ones found in two large, extinct populations from Sardinia and the Alps represented by museum specimens. The amount of genetic variability recruited with the founders was still present in the captive population of the year 2000, mainly because the carriers of rare alleles were still alive. However, the decline in expected heterozygosity and the loss of alleles over generations in captivity was significant. Point estimates of effective population size, N(e), based on pedigree data and estimates of effective number of breeders, N(b), based on allele frequency changes, ranged from 20 to 30 and were significantly smaller than the census size. The results demonstrate that the amount of genetic variability in the captive bearded vulture population is comparable or even larger than the amount present in natural populations. However, the population is in danger to lose genetic variability over time because of genetic drift. Management strategies should therefore aim at preserving genetic variability by minimising kinship, and at increasing N(e) by recruiting additional founders and enhancing gene flow between the released, the captive and natural populations.  相似文献   

12.
Pedigree analysis has clear benefits for the genetic management of threatened populations through the evaluation of inbreeding, population structure and genetic diversity. The use of pedigrees is usually restricted to captive populations and few examples exist of their exclusive use in managing free-ranging populations. One such example is the management of the takahe (Porphyrio hochstetteri), a highly endangered, flightless New Zealand rail at risk from introduced mammalian predators and habitat loss. During the 1980’s and 90’s, as part of the takahe recovery programme, birds were translocated from the sole remnant population in Fiordland to four offshore islands from which introduced predators had been eradicated. The subsequent “island” population, now numbering 83 and thought to be at carrying capacity, has been closely monitored since founding. Detailed breeding records allow us to analyse the island pedigree, which is up to 7 generations deep. Gene-drop analysis indicated that 7.5% of genetic diversity has been lost over the relatively short timeframe since founding (2.1 generations on average; total genetic founders = 31) due to both a failure to equalise founder representation early on and subsequent disproportionate breeding success (founder equivalents = 12.5; founder genome equivalents = 6.6). A high prevalence of close inbreeding will have also impacted on genetic diversity. Predictions from pedigree modelling suggest that 90% genetic diversity will be maintained for only 12 years, but by introducing a low level of immigration from the Fiordland population and permitting the population to grow, 90% GD could be maintained over the next 100 years. More generally, the results demonstrate the value of maintaining pedigrees for wild populations, especially in the years immediately after a translocation event.  相似文献   

13.
Empirical support for the genetic management strategies employed by captive breeding and reintroduction programs is scarce. We evaluated the genetic management plan for the highly endangered black‐footed ferret (Mustela nigripes) developed by the American Zoo and Aquarium Associations (AZA) as a part of the species survival plan (SSP). We contrasted data collected from five microsatellite loci to predictions from a pedigree‐based kinship matrix analysis of the captive black‐footed ferret population. We compared genetic diversity among captive populations managed for continued captive breeding or reintroduction, and among wild‐born individuals from two reintroduced populations. Microsatellite data gave an accurate but only moderately precise estimate of heterozygosity. Genetic diversity was similar in captive populations maintained for breeding and release, and it appears that the recovery program will achieve its goal of maintaining 80% of the genetic diversity of the founder population over 25 years. Wild‐born individuals from reintroduced populations maintained genetic diversity and avoided close inbreeding. We detected small but measurable genetic differentiation between the reintroduced populations. The model of random mating predicted only slightly lower levels of heterozygosity retention compared to the SSP strategy. The random mating strategy may be a viable alternative for managing large, stable, captive populations such as that of the black‐footed ferret. Zoo Biol 22:287–298, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

14.
The minimization of kinship in captive populations is usually achieved through the use of pedigree information. However, pedigree knowledge alone is not sufficient if pedigree information is missing, questionable, or when the founders of the captive population are related to one another. If this is the case, higher levels of inbreeding and lower levels of genetic diversity may be present in a captive population than those calculated by pedigree analyses alone. In this study, the genetic status of the critically endangered Mississippi sandhill crane (MSC) (Grus canadensis pulla) was analyzed using studbook data from the U.S. Fish and Wildlife Service managed captive breeding program as well as microsatellite DNA data. These analyses provided information on shared founder genotypes, allowing for refined analysis of genetic variation in the population, and the development of a new DNA-based studbook pedigree that will assist in the genetic management of the MSC population.  相似文献   

15.
ABSTRACT Recently, a number of papers have addressed the use of pedigrees in the study of wild populations, highlighting the value of pedigrees in conservation management. We used pedigrees to study the horses (Equus caballus) of Assateague Island National Seashore, Maryland, USA, one of a small number of free-ranging animal populations that have been the subject of long-term studies. This population grew from 28 in 1968 to 175 in 2001, causing negative impacts on the island ecosystem. To minimize these effects, an immunocontraception program was instituted, and horse numbers are slowly decreasing. However, there is concern that this program may negatively affect the genetic health of the herd. We found that although mitochondrial DNA diversity is low, nuclear diversity is comparable to that of established breeds. Using genetic data, we verified and amended maternal pedigrees that had been primarily based on behavioral data and inferred paternity using genetic data along with National Park Service records of the historic ranges of males. The resulting pedigrees enabled us to examine demography, founder contributions, rates of inbreeding and loss of diversity over recent generations, as well as the level of kinship among horses. We then evaluated the strategy of removing individuals (using nonlethal means) with the highest mean kinship values. Although the removal strategy increased the retained diversity of founders and decreased average kinship between individuals, it disproportionately impacted sizes of the youngest age classes. Our results suggest that a combined strategy of controlled breeding and immunocontraception would be more effective than removing individuals with high mean kinships in preserving the long-term health and viability of the herd.  相似文献   

16.
For captive breeding to play a significant role in conservation, ex situ populations must be scientifically managed to meet objective goals for retaining representative genetic variation. Imperfect genealogical information requires fundamental assumptions to be made that may bias downstream measures of genetic importance, upon which management decisions are based. The impacts of such assumptions are most pronounced within breeding programmes characterized by a high proportion of individuals of unknown ancestry, as exemplified by the large captive population of the St Vincent parrot (Amazona guildingii). The degree to which microsatellite-based estimates of relatedness may improve upon the assumptions of conventional pedigree-based management was investigated using genotypic data collected at eight microsatellite loci and two marker-based relatedness estimators. The measure, rxyLR, was found to explain the highest amount of variation in true relatedness. Integration of pairwise estimates of founder relatedness with studbook data transformed current understanding of the relatedness structure of the A. guildingii population from two subgroups characterized by a high and low degree of relatedness, respectively, to a situation where all 72 individuals are prioritized for breeding according to their estimated mean kinships. Furthermore, the discovery of opposing, directional bias exhibited by rxyLR and rxyQG in assigning dyads to a given relationship category suggests that an approach that utilizes a combination of pairwise relatedness estimators may provide the most genetic information for balancing the dual considerations of maximizing gene diversity and minimizing inbreeding in developing breeding recommendations.  相似文献   

17.
Ex situ conservation plays an increasingly important role in the conservation of endangered species. Molecular genetic markers can be helpful to assess the status of captive breeding programmes. We present the first molecular genetic analysis of the captive population of the Arabian sand cat (Felis margarita harrisoni) using microsatellites. Our data indicates that the captive population of F. m. harrisoni comprises three genetic clusters, which are based on different founder lineages. Genetic diversity was relatively high, the effective population size even exceeded the number of founders. This was presumably caused by subsequently integrating unrelated, genetically diverse founders into the captive population and a careful management based on minimizing kinship. However, we detected an error in the studbook records, which might have led to incestuous matings and underlines the usefulness of molecular evaluations in captive breeding programmes for endangered species.  相似文献   

18.
Hatchery broodstocks used for genetic conservation or aquaculture may represent their ancestral gene pools rather poorly. This is especially likely when the fish that found a broodstock are close relatives of each other. We re-analysed microsatellite data from a breeding experiment on red sea bream to demonstrate how lost genetic variation might be recovered when gene frequencies have been distorted by consanguineous founders in a hatchery. A minimal-kinship criterion based on a relatedness estimator was used to select subsets of breeders which represented the maximum number of founder lineages (i.e., carried the fewest identical copies of ancestral genes). UPGMA clustering of Nei's genetic distances grouped these selected subsets with the parental gene pool, rather than with the entire, highly drifted offspring generation. The selected subsets also captured much of the expected heterozygosity and allelic diversity of the parental gene pool. Independent pedigree data on the same fish showed that the selected subsets had more contributing parents and more founder equivalents than random subsets of the same size. The estimated mean coancestry was lower in the selected subsets, meaning that inbreeding in subsequent generations would be lower if they were used as breeders. The procedure appears suitable for reducing the genetic distortion due to consanguineous and over-represented founders of a hatchery gene pool.  相似文献   

19.
Many breeding programs managed by zoos and aquariums employ strategies that minimize mean kinship as a way of retaining genetic diversity (MK strategies). MK strategies depend on accurate and complete pedigrees, but population founders are generally assumed to be unrelated and not inbred. This assumption was historically necessitated by the unavailability of data on founder relationships, but with DNA techniques it is sometimes now possible to estimate those relationships. We used computer simulations to investigate the impact of founder assumptions on the effectiveness of MK strategies. Individuals with known pedigrees were managed in groups of 10, 30, and 100 founders at two different rates of reproduction and two different degrees of founder relationship. The impact of assuming founders were unrelated was quantified by calculating the differences in gene diversity and inbreeding that were observed between simulations that used known relationships and simulations that assumed founders were unrelated. Results indicated that utilizing known relationships retained 0–2% more gene diversity over ten generations than assuming founders were unrelated, with specific results dependent on the conditions of a given scenario. Similar results were observed for inbreeding, with long-term levels of inbreeding being 0–2% lower when relationships were known. There were higher benefits to knowing founder relationships as reproductive rate increased, as well as when full-siblings were included in small groups of founders. Overall, however, long-term benefits gained from knowing founder relationships were generally small. Therefore, MK strategies probably often produce near optimal results when standard founder assumptions are made.  相似文献   

20.
B. Meier 《Human Evolution》1989,4(2-3):223-229
Extinction of small, closed populations in captivity as well as in the wild is believed to be nearly inevitable, because inbreeding will adversely effect reproductive success, mortality, sex ratio and also the susceptibility to epidemic diseases and environmental stress. An ever increasing number of primate species exist only in small isolated populations, which contain only a part of the original genetic variability. In captive breeding programs research about genetic management strategies is, therefore, of essential importance. In 1980 we imported 9Loris tardigrdus nordicus (4 females, 5 males) from NE-Sri Lanka. The founders came from one natural breeding population. All sexual mature females are breeding. Up to now the colony contains 36 living individuals. The main goal of our long-term genetic management plan was to minimize inbreeding and to preserve the genetic diversity. Therefore, we try to pass the founder bottleneck rapidly by enlarging the population to a desired minimum population size of 25 pairs and to equalize the founder representation within any generation. The need to control the spread of sublethal genes, introduced by one of the founders, conflicts directly with the aim of equalizing the founder representation. A solution of this problem is discussed. To produce a sufficiently large population we intend to give animals to other institutions and to build up an exchange-system for offspring individuals, which should lead to an international studbook.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号