首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.  相似文献   

2.
Prostaglandins and proinflammatory cytokines are implicated in the etiology of neurodegenerative diseases, such as Alzheimer's disease. Signaling cascades initiated by these factors may result in reactive oxygen species generation and cell death. The insulin-like growth factors (IGF) are ubiquitous polypeptides involved in all aspects of growth and development. Additionally, the IGF are regarded as survival factors that display potent antiapoptotic activity. Interfering with IGF production, distribution, or signaling may result in greater susceptibility to apoptotic stimuli. In neurodegenerative conditions, the IGF appear to be antagonized by prostaglandins and proinflammatory cytokines. In this review, the relationship among specific prostaglandins, the proinflammatory factors, tumor necrosis factor, interleukin-1, and interleukin-6, and the IGF system will be investigated.  相似文献   

3.
IGFs系统包含3个配体(IGF-1、IGF-2、IGF-3)、2个受体(IGF-1R、IGF-2R)和6个IGF结合蛋白(IGFBP).生殖和生长是生物体最基本的特征,两者既密切相关又相互区别,胰岛素样生长因子(IGFs)是生长轴和生殖轴相交联的关键因子.最近研究表明:鱼类性腺的发育及成熟伴随着细胞分化和组织生长,传统的生长因子IGF-1、IGF-2和最近发现的IGF-3,对鱼类性腺发挥着重要作用.本文重点介绍鱼类特有的配体IGF-3的结构,鱼类IGFs系统的信号通路及其与鱼类性腺的相关性研究进展.  相似文献   

4.
Little is known about the factors regulating epithelial ovarian cancer cell growth. This is due, in large part, to the difficulty in obtaining and culturing human ovarian cells for relevantin vitrostudies. We recently developed a method for culturing epithelial carcinoma cells derived from fresh, untreated epithelial ovarian cancer specimens. The cell populations are free of fibroblasts and reflect the primary tumor as determined by chromosomal analysis. In this study we report on the cells’ growth in serum-free medium and their secretion of CA-125, a glycoprotein marker for ovarian cancer. Furthermore we characterize the insulin-like growth factor (IGF) system in these primary ovarian carcinoma cell cultures. The cells secrete IGF peptides and IGF-binding proteins, possess specific type I IGF receptors, and respond to exogenous IGFs. The culture system reported here provides the basis for further study and manipulation of the IGF system as well as other regulators of epithelial ovarian cancer. Greater understanding of the cellular and molecular mediators of primary human ovarian cancer cell growth may translate into relevant clinical interventions.  相似文献   

5.
Insulin-like growth factors (IGF-I/-II) are not only the endocrine mediators of growth hormone-induced metabolic and anabolic actions but also polypeptides that act in a paracrine and autocrine manner to regulate cell growth, differentiation, apoptosis and transformation. The IGF system is a complex network comprised of two growth factors (IGF-I and -II), cell surface receptors (IGF-IR and -IIR), six specific high affinity binding proteins (IGFBP-I to IGFBP-6), IGFBP proteases as well as several other IGFBP-interacting molecules, which regulate and propagate IGF actions in several tissues. Besides their broad-spectrum physiological and pathophysiological functions, recent evidence suggests even a link between IGFs and different malignancies.  相似文献   

6.
Antibodies against growth factors like IGF1, IGF2, aFGF, bFGF and, to a certain extent, TGF alpha and EGF were shown to cause apoptosis of normal and tumorigenic cells while apoptotic cell death could be prevented neither by single growth factors nor by serum. Antibodies to growth factors caused apoptosis by interacting with growth factors bound to their receptors on the cell surface. The phenomenon is likely to be associated with active internalization of growth factor receptors loaded with ligands. Apparently these activated receptors are essential for cell survival and their disappearance from the cell surface initiates apoptosis.  相似文献   

7.
The insulin-like growth factors I and II (IGF I and II) and their cell surface receptors are expressed in the mammalian embryo and may function as autocrine or paracrine growth factors during early development. P19 embryonic carcinoma cells, derived from a 7.5 day mouse embryo, were used as a model for a functional study of the IGF system in post-implantation embryogenesis. Undifferentiated P19 cells synthesized IGF I and II, the type I and II IGF receptors, and IGF binding proteins (IGF BP2, IGF BP3, and IGF BP4). P19 cells showed an increase in thymidine incorporation of 150% of control with a 4 hour incubation of IGF I (10 ng/ml) or IGF II (100 ng/ml) and an increase in cell viability compared to control cells during 24 hours of serum starvation. In both experiments IGF I was more potent than IGF II. Endogenous concentrations of IGF I and II in conditioned media were low compared to the doses of exogenous IGFs required for biologic effect, but nonetheless contributed significantly to baseline DNA synthesis, as demonstrated by inhibition of IGF actions with specific antibodies. Cell surface associated IGF BPs bound more radiolabeled IGF than IGF receptors, as determined by binding studies and affinity cross-linking. IGF I and IGF II appeared to regulate production of IGF BP2, suggesting that the IGFs may regulate their own actions by altering the abundance of their binding proteins. © 1993Wiley-Liss, Inc.  相似文献   

8.
Insulin-like growth factors (IGF) are polypeptides that regulate growth, differentiation and survival in a multitude of cells and tissues. The IGF system consists of ligands, receptors, binding proteins and binding protein proteases. The influence of the IGF system on reproductive parameters, specifically gonadotropin release and interactions between the IGF system and other effectors of gonadotropin release will be examined in this review.  相似文献   

9.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

10.
Various growth factors have been implicated in the regulation of cell proliferation and differentiation during tooth development. It has been unclear if insulin-like growth factors (IGFs) participate in the epithelium–mesenchyme interactions of tooth development. We previously produced three-dimensional sandwich co-culture systems (SW) containing a collagen membrane that induce the differentiation of epithelial cells. In the present study, we used the SW system to analyze the expression of IGFs and IGFRs. We demonstrate that IGF2 expression in mesenchymal cells was increased by SW. IGF1R transduces a signal; however, IGF2R does not transduce a signal. Recombinant IGF2 induces IGF1R and IGF2R expression in epithelial cells. IGF1R expression is increased by SW; however, IGF2R expression did not increase by SW. Thus, IGF2 signaling works effectively in SW. These results suggest that IGF signaling acts through the collagen membrane on the interaction between the epithelium and mesenchyme. In SW, other cytokines may be suppressed to induce IGF2R induction. Our results suggest that IGF2 may play a role in tooth differentiation.  相似文献   

11.
Molecular interactions of the IGF system   总被引:1,自引:0,他引:1  
The insulin-like growth factor (IGF) system is a complex network of two soluble ligands; several cell surface transmembrane receptors and six soluble high-affinity binding-proteins. The IGF system is essential for normal embryonic and postnatal growth, and plays an important role in the function of a healthy immune system, lymphopoiesis, myogenesis and bone growth among other physiological functions. Deregulation of the IGF system leads to stimulation of cancer cell growth and survival. In order to manipulate the IGF system in the treatment of certain disorders, we must understand the protein-protein interactions at a molecular level. The complex molecular interactions of the ligands and receptors of the IGF system underlie all the biological actions mentioned above and will be the focus of this review.  相似文献   

12.
Insulin-like growth factor binding proteins (IGFBPs) are soluble proteins present in in extracellular fluids. They have high affinity for IGF-I and -II. Blood concentrations are controlled by nutrition and by hormones in a manner that in most, but not all, instances correlates with plasma concentrations of IGF-I or -II. IGF binding proteins are secreted by a range of cell types in a manner that may serve to modulate the functions of the growth factors in a pericellular environment. IGF binding proteins cxan modify IGF interaction with the type I receptor and may thereby alter IGF signal transduction through this transmembrane signalling unit. Binding proteins may also act as inhibitors or potentiators of biological responsiveness and thereby directly cell type specific responses.  相似文献   

13.
Mannose 6-phosphate, insulin like growth factors I and II (IGF I, IGF II), insulin and epidermal growth factor (EGF) induce a 1.5- to 2-fold increase of mannose 6-phosphate binding sites at the cell surface of human skin fibroblasts. The increase is completed within 10-15 min, is dose and temperature dependent, reversible and transient even in the presence of the effectors. It is due to a redistribution of mannose 6-phosphate/IGF II receptors from internal membranes to the cell surface, while the affinity of the receptors is not affected. Combinations of mannose 6-phosphate with IGF I, IGF II or EGF stimulate the redistribution of the receptor to the cell surface in an additive manner, while combinations of the growth factors result in a non-additive stimulation of redistribution. The redistribution is not dependent on extracellular calcium and appears also to be independent of changes of free intracellular calcium. Pre-treatment of fibroblasts with cholera toxin or pertussis toxin increases the number of cell surface receptors 2- and 1.5-fold, respectively. Neither of the toxins affects the redistribution of mannose 6-phosphate/IGF II receptors induced by the growth factors, while both toxins abolish the receptor redistribution induced by mannose 6-phosphate. These results suggest a multiple regulation of the cell surface expression of mannose 6-phosphate/IGF II receptors by Gs- and Gi-like proteins sensitive to cholera toxin and pertussis toxin and by stimulation of mannose 6-phosphate/IGF II, IGF I and EGF receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The insulin-like growth factors I and II are single chain polypeptides homologous to proinsulin. IGF I and IGF II contribute to cell regulation and stimulate protein synthesis via signaling through type I receptors which are homologous to insulin receptors and activate phosphorylation cascades. IGFs enhance the proliferation of chondocytes and the proliferation of their collagen and proteoglycan matrix; IGFs stimulate longitudinal (endochondral) bone growth. Throughout life, IGFs are constitutvely expressed ubiquitous factors which help to maintain the survival of differentiated cells, Increased expression is found during growth and tissue repair, Six specific binding proteins, IGFBP 1-6, allow additional tissue compartment specific control of IGF activity; IGFBP production favours storage and IGFBP cleavage leads to activation.  相似文献   

15.
The role(s) of one family of polypeptide growth factors in a developing organ system was examined. Renal anlagen (metanephroi) were surgically removed from 13-d-old rat embryos and grown in organ culture for up to 6 d. Over this period of time when placed in serum-free defined media, the metanephroi increased in size and morphologic complexity. Messenger RNAs for both insulin-like growth factors (IGFs), IGF I and IGF II, were present in the metanephroi. Immunoreactive IGF I and IGF II were produced by the renal anlagen and released into culture media. Levels were relatively constant during the 6 d in culture and averaged 3.5 X 10(-9) M IGF I and 8.3 X 10(-9) M IGF II in media removed from metanephroi after contact for 24 h. IGF binding protein activity was not detected in culture media. Growth and development of metanephroi in vitro was prevented by the addition of anti-IGF I or anti-IGF II antibodies to organ cultures. IGF II produced by metanephroi was active in an IGF II biological assay system and addition of anti-IGF II receptor antibodies to organ cultures prevented growth and development, consistent with the action of IGF II in metanephroi being mediated via the IGF II receptor. The data demonstrate production of both IGF I and IGF II by developing rat metanephroi in organ culture. Each of these peptides is necessary for growth and development of the renal anlage to take place in vitro. Our findings suggest that both IGF I and IGF II are produced within the developing metanephros in vivo and promote renal organogenesis.  相似文献   

16.
Growth factors have an important role in the regulation of cell growth, division and differentiation. They are also involved in the regulation of embryonic growth and differentiation. Insulin and insulin-like growth factor I (IGF I) play an important part in these events in the later stages of embryogenesis, when organogenesis is completed. In this study, we are presenting evidence that insulin and IGF I are also secreted by embryonic tissues during the prepancreatic stage of mouse development. We found measurable amounts of insulin and IGF I in 8- to 12-day-old mouse embryos. We also showed that embryonic cells derived from 8-, 9- and 10-day-old mouse embryos secrete insulin, IGF I and/or related molecules. Furthermore, the same growth factors, when added to the culture of 9-day-old mouse embryonic cells, stimulate their proliferation. These results lead to the conclusion that insulin can stimulate the growth of embryonic cells during the period when pancreas is not yet formed, which is indirect evidence for a paracrine (or autocrine) type of action.  相似文献   

17.
Several abnormalities in the insulin-like growth factor-1 (IGF1) and erbB receptors pathways stimulate the growth and survival of lung cancer cells, but their mechanisms of action and cooperation are poorly understood. In this report, we have identified a new mechanism of apoptosis inhibition by amphiregulin through an IGF1-dependent survival pathway in non-small cell lung cancer (NSCLC) cells: amphiregulin activates the IGF1 receptor that in turn induces the secretion of amphiregulin and IGF1. In the absence of serum, the NSCLC cell line H358 resists apoptosis and secretes factors protecting the NSCLC cell line H322 from serum deprivation apoptosis. IGF1 receptor inhibitor AG1024 as well as epidermal growth factor receptor inhibitors AG556 and ZD1839 restore apoptosis in H322 cells cultured in H358-conditioned medium. Accordingly, the anti-apoptotic activity of H358-conditioned medium is completely abolished after incubation with anti-amphiregulin neutralizing antibody and only partially with anti-IGF1 neutralizing antibody. H358-conditioned medium and amphiregulin induce IGF1 receptor phosphorylation in H322 cells, which is prevented by anti-amphiregulin neutralizing antibody but not by AG556 or ZD1839. H358 cells secrete a high level of amphiregulin that, in combination with IGF1, prevents serum deprivation apoptosis. Finally, IGF1 receptor inhibitor blocks amphiregulin and IGF1 release by H358 cells.  相似文献   

18.
The aim of the study was to evaluate the effect of insulin-like growth factors (IGF1 and IGF2), stem cell factor (SCF) and epidermal growth factor (EGF) on the development of embryos exposed to oxidative stress. C3B6F1 female mice were stimulated with 5 IU of pregnant mare serum gonadotropin and 5 IU of equine chorionic gonadotropin (eCG). Two-cell embryos were flushed out from the fallopian tubes 40 h after eCG administration and mating with DBA males. In each experiment embryos were divided into three groups and cultured in (1) control medium, (2) control medium with 0.1 mM hydrogen peroxide and (3) control medium with hydrogen peroxide and separately with IGF1, IGF2, SCF or EGF in concentrations of 1 ng/ml, 10 ng/ml and 100 ng/ml. Under phase-contrast microscopy, 8-cell and compacted embryos, and early, expanded, hatched and outgrown blastocysts were counted at 24 h. The total blastocyst (TB) and inner cell mass (ICM) cell numbers were established by differential staining. Blastocyst cell viability was examined under fluorescence microscopy. To detect apoptosis, TUNEL was performed and visualized under a laser scanning confocal microscope. Hydrogen peroxide decreased embryo growth, blastocyst rates, blastocyst cell viability as well as TB and ICM counts. The TUNEL reaction revealed significantly more apoptotic cells in oxidative stress conditions. Tested factors revealed a varying extent of protective activity against oxidative stress caused by hydrogen peroxide. In media containing hydrogen peroxide and one of the four tested factors (IGF1, IGF2, SCF or EGF) the embryos developed faster than in media with hydrogen peroxide alone. IGF1, IGF2 and EGF increased both TB and (or) ICM counts in embryos exposed to hydrogen peroxide. All tested factors reduced the number of apoptotic cells (TUNEL) in embryos exposed to hydrogen peroxide.  相似文献   

19.
Tissue homeostasis requires balancing cell proliferation and programmed cell death. IGF1 significantly suppressed etoposide-induced apoptosis, measured by caspase 3 activation and quantitation of cellular subG(1) DNA content, in rat parotid salivary acinar cells (C5). Transduction of C5 cells with an adenovirus expressing a constitutively activated mutant of Akt-suppressed etoposide-induced apoptosis, whereas a kinase-inactive mutant of Akt suppressed the protective effect of IGF1. IGF1 also suppressed apoptosis induced by taxol and brefeldin A. EGF was unable to suppress apoptosis induced by etoposide, but was able to synergize with IGF1 to further suppress caspase 3 activation and DNA cleavage after etoposide treatment. The catalytic activity of Akt was significantly higher following stimulation with both growth factors compared to stimulation with IGF1 or EGF alone. These results suggest that a threshold of activated Akt is required for suppression of apoptosis and the cooperative action of growth factors in regulating salivary gland homeostasis.  相似文献   

20.
Growth factors and proto-oncogenes play an important role in the regulation of embryonic growth and differentiation as well as in tumorigenesis. Insulin and insulin-like growth factor I (IGF I) are secreted by embryonic tissues during the prepancreatic stage of mouse development. Measureable amounts of these factors were found in 8- to 12-day-old embryos. Embryonic cells derived from 8- to 10-day-old embryos secrete insulin and IGF I in serum-free medium. Relatively high levels of c-myc, c-fos and c-H-ras oncoproteins were also detected in 8- to 12-day-old embryos. Insulin and IGF I, when added to the culture of embryonic cells, stimulate their proliferation. Similar results were obtained in some animal or human tumors. Murine myeloid leukemias and melanoma B 16 secrete a substance immunologically cross reactive with insulin (SICRI) both in vivo and in serum-free media. In culture, the DNA synthesis rate per leukemic or melanoma cell is proportional to cell density and is reduced by antiinsulin serum in case of leukemic cells. Human hemangiosarcoma secrete IGF I, which also plays a role as an autocrine factor. Purified IGF I efficiently induce c-myc and c-fos mRNA, which is among the earliest events following growth factor stimulation, leading to mitosis. These results lead us to the conclusion that IGF I and insulin together with oncoproteins stimulate the growth of embryonic and tumor cells, which is indirect evidence for a paracrine (or autocrine) type of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号