首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

2.
Osteoblasts, the chief bone-forming cells, are differentiated from mesenchymal stromal/stem cells. Disruption of this differentiation process can cause osteoporosis, a bone disease characterized by low bone mass and deteriorated bone structure. Cholesterol has been implicated in pathogenesis of osteoporosis, and was recently identified as an endogenous activator of Hedgehog (Hh) signaling. However, its pathological and physiological roles in osteoblast differentiation are still poorly understood. Moreover, it is unclear whether these potential roles played by cholesterol are related to its capability to modulate Hh pathway. In this study, we investigated the role of exogenous versus endogenous cholesterol in osteogenesis and Hh pathway activation using ST2 cells, a bone marrow stromal cell line. We found that exogenous cholesterol significantly inhibited alkaline phosphatase (ALP) activity and messenger RNA expression of osteoblast markers genes (Alpl, Sp7, and Ibsp) while modestly activating expression of Gli1 (a readout of Hh signaling) under both basal osteogenic culture condition and Wnt3a treatment. Similarly, exogenous cholesterol suppressed osteogenic response of ST2 cells to sonic Hh (Shh) or purmorphamine (Purmo) treatment, which, however, was accompanied by diminished induction of Gli1, indicating the involvement of a Hh-dependent mechanism. Interestingly, depletion of endogenous cholesterol also reduced Shh-induced ALP activity and Gli1 expression. Likewise, cholesterol depletion inhibited osteogenic response to Purmo, although it did not affect Gli1 induction. Taken together, our findings have demonstrated that cholesterol plays a dual role in osteoblast differentiation likely through both Hh-dependent and -independent mechanisms.  相似文献   

3.
4.
During bone loss, osteoblast population can be replaced by adipose tissue. This apparent reciprocal relationship between decreased bone density and increased fat formation can be explained by an imbalance in the production of bone-forming and fat-forming cells in the marrow cavity. Thus, osteoblast and adipocyte pathways seem more closely and inversely related. In the present study, we investigated the effects of dexamethasone (dex) and calcitriol [1,25(OH)(2)D(3)] on proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures. Stromal cells were grown in primoculture in presence of dex and subcultivated in presence of dex and/or 1,25(OH)(2)D(3). Total cell proliferation, osteoblast and adipocyte-cells number, and -mRNA specific markers were used to study the effects of hormonal treatment on stromal cells. Total cell proliferation was stimulated by dex and inhibited by 1,25(OH)(2)D(3). Dex increased osteoblast and adipocyte cell population whereas calcitriol decreased bone-forming cell number and increased fat cell population. The presence of both hormones led to a strong decrease in osteoblastic cells and to a strong increase in adipocytic cell number. Dex induced mRNA osteoblastic markers expression like bone sialoprotein (BSP) and osteocalcin (OC) and an adipocyte marker expression, the fatty acid binding protein aP2. Calcitriol decreased the dex-induced BSP expression but stimulated slightly OC and aP2 mRNA. The effects of both hormones was to increase strongly OC and aP2 mRNA. These results support that, in rat bone marrow, adipocyte proliferation and differentiation are stimulated by glucocorticoids and calcitriol which act synergically, whereas osteoblastic cell proliferation and differentiation are increased by dex and inhibited by 1,25(OH)(2)D(3).  相似文献   

5.
6.
7.
Summary— The clonal rat rhabdomyosarcoma cell line BA-HAN-IC is composed of proliferating mononuclear cells, some of which spontaneously fuse to terminally differentiated myotube-like giant cells. This cell line has been shown to be susceptible to differentiation induction with all-trans retinoic acid (RA). Since it is still unknown whether exclusively all-trans RA itself or also its metabolites can act as inductive compounds in our cell line, we exposed BA-HAN-1C cells to the metabolites 4-hydroxy RA, 4-oxo RA and 5,6epoxy RA. Exposure to these RA metabolites resulted in a significant inhibition of proliferation (P < 0.001) and induction of cellular differentiation, as evidenced by a significant increase in the number of myotube-like giant cells (P < 0.05) and a significant increase in creatine kinase activity (P < 0.05). However, differences in the inductive potency of these RA metabolites became apparent. Furthermore, RA metabolites exhibited a significantly weaker (P < 0.05) inductive activity when compared to all-trans RA. Summarizing our results we could demonstrate that the endogenous metabolites 4-hydroxy RA, 4-oxo RA and 5,6-epoxy RA are not merely deactivated cellular excretion products of all-trans RA, but potent inducers of differentiation and inhibitors of proliferation, possibly contributing to the complex physiological actions of retinoic acid.  相似文献   

8.
We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds.  相似文献   

9.
The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry–based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.  相似文献   

10.
11.
The spatial development of the cultivation of a bone marrow stromal cell line (SR-4987) in porous carriers was investigated in order to construct a three-dimensional hematopoietic culture system. Low-rate continuous agitation, 20 rpm, was an appropriate method to achieve initial adhesion of cells onto a cellulose porous beads (CPB, 100 μm pore diameter) in a spinner bottle, compared with other methods such as centrifugation and intermittent agitation. Cell growth with continuous agitation at 70 rpm after initial cell adhesion was not inferior to that at 20 rpm. A 2- and 10-fold increase in the inoculum cell concentration for CPB and another type of porous cellulose beads (Micro-cube (MC), 500 μm pore diameter) resulted in a 1.2- and 2-fold increase in final cell concentrationm, respectively. Cells attached to the MC beads and a polyester nonwoven dic (Fibra-cell (FC)) could grow and spread well on the carriers and a fibroblast-like shape was observed under scanning electron microscopy while the cells on CPB were globular. The flatness and inner surface area of these carriers may be the reason for the differences in cell morphology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
目的:观察无巨核细胞存在的条件下促血小板生成素能否刺激骨髓基质细胞纤维形成。方法:用改良Dexter培养法进行体外不同浓度促血小板生成素(TPO)作用下的基质细胞培养,在培养过程中检测基质细胞相对增殖指数,纤维连接蛋白、层粘素和Ⅳ型胶原的表达,以及Ⅲ型前胶原蛋白的合成。结果:TPO可刺激基质细胞增殖,相对增殖指数随TPO浓度增加而增强,但不随作用时间延长而增强;纤维连接素、层粘素和Ⅳ型胶原在对照组与实验组均有阳性表达,但实验组强于对照组,但阳性强度不随培养时间的延长而增强;标记的Ⅲ型前胶原蛋白平均荧光强度实验组高于对照组,差异明显,但这种作用的强弱与TPO浓度相关性不强。结论:无巨核细胞存在的条件下,TPO可直接刺激骨髓基质细胞产生细胞外基质和胶原,促进其纤维形成。  相似文献   

13.
14.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

15.
16.
Summary We assessed the potential role of all-trans-retinoic acid on the developing chick pancreas, specifically with regard to the proportions of insulin cells. The endodermal component of the dorsal pancreatic bud of 5-d-old chick embryos was cultured on Matrigel. Retinoic acid (10−6 or 10−5 M) was added to a standard serum-free medium, Ham's F12 containing insulin, transferrin and selenium (F12.ITS). Control grafts were cultured in F12.ITS alone or in F12.ITS with DMSO (the diluent for retinoic acid). After 7 d the explants were retrieved, freeze-dried, vapor-fixed, and embedded in resin. Endocrine cell types were identified by immunocytochemistry. The numbers of insulin cells were expressed as a proportion of the sum of insulin plus glucagon cells. Retinoic acid had a dose-related effect; the proportion of insulin cells in explants treated with the lower dose of retinoic acid (10−6 M) was more than twice the proportion of insulin cells in explants treated with the higher dose (10−5 M) of retinoic acid and more than three times that of the control grafts.  相似文献   

17.
18.
A nerve cell line designated NC-HIMT was established from a HIMT cell line derived from a benign ovarian, three germ layer immature teratoma removed from a 21-year-old Japanese female. The HIMT cells were elongated, ellipsoid or spherical in shape, whose karyotype was on the high side of normal diploidy. Small amounts of retinoic acid enhanced differentiation and maturation of the HIMT cells into nervous tissue, and the NC-HIMT cell line was established by the colony isolating technique when the HIMT cell line was cultured in the presence of retinoic acid-supplemented medium. After establishment, the NC-HIMT cell line was cultured and maintained in retinoic acid-free growth medium. Even though these cells were cultured without retinoic acid, the phenotype of nerve cells remained and the cells were also maintained in a state of high normal diploidy. The nerve cells contacted each other with their long cell projections and formed networks. Immunocytochemical observations using anti-bovine NSE, alpha-internexin, neurofilament 200kD, peripherin and GFAP confirmed that the cells were either nerve cells or glia cells. These results assume that HIMT cells, which were derived from an immature teratoma, have progenitor and/or stem cells which can differentiate into nerve and/or glial cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号