首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
FNR-DNA interactions at natural and semi-synthetic promoters   总被引:8,自引:1,他引:7  
  相似文献   

4.
5.
FNR, the gene regulator of anaerobic respiratory genes of Escherichia coli is converted in vivo by O2 and by chelating agents to an inactive state. The interconversion process was studied in vivo in a strain with temperature controlled synthesis of FNR by measuring the expression of the frd (fumarate reductase) operon and the reactivity of FNR with the alkylating agent iodoacetic acid. FNR from aerobic bacteria is, after arresting FNR synthesis and shifting to anaerobic conditions, able to activate frd expression and behaves in the alkylation assay like anaerobic FNR. After shift from anaerobic to aerobic conditions, FNR no longer activates the expression of frd and reacts similar to aerobic FNR in the alkylation assay. The conversion of aerobic (inactive) to anaerobic (active) FNR occurs in the presence of chloramphenicol, an inhibitor of protein synthesis. Anaerobic FNR can also be converted post-translationally to inactive, metal-depleted FNR by growing the bacteria in the presence of chelating agents. The reverse is also possible by incubating metal-depleted bacteria with Fe2+. From the experiments it is concluded that the aerobic and the metal-depleted form of FNR can be transferred post-translationally and reversibly to the anaerobic (active) form. The response of FNR to changes in O2 supply therefore occurs at the FNR protein level in a reversible mode.Abbreviation BVred = reduced benzyl viologen  相似文献   

6.
7.
8.
9.
10.
Facultatively anaerobic bacteria are able to adapt to many different growth conditions. Their capability to change their metabolism optimally is often ensured by FNR-like proteins. The FNR protein ofEscherichia coli functions as the main regulator during the aerobic-to-anaerobic switch. Low oxygen tensions activate this protein which is expressed constitutively and is inactive under aerobic conditions. The active form is dimeric and contains a [4Fe−4S]2+ cluster. The direct dissociation of the cluster to the [2Fe−2S]2+ cluster by the effect of oxygen leads to destabilization of the FNR dimer and to loss of its activity. The active FNR induces the expression of many anaerobic genes; the set comprises over 100 of controlled genes. Many other bacteria contain one or more FNR analogues. All these proteins form the FNR family of regulatory proteins. Properties of these proteins are very distinct, sometimes even among representatives of different strains of the same bacterial species. FNR-like proteins together with other regulators (e.g., two-component system ArcBA, nitrate-sensing system NarXL,etc.) control a complicated network of modulons that is characteristic for every species or even strain and enables fine tuning of gene expression.  相似文献   

11.
A method is described for the isolation and purification of ferredoxin-NADP+ oxidoreductase (FNR, E.C. 1.18.1.2) and plastocyanin from spinach thylakoids. FNR is recovered from pools which are loosely and tightly bound to the membrane, with minimal disruption of pigment-protein complexes; yields can thus be higher than from procedures which extract only the loosely bound enzyme.Washed thylakoid membranes were incubated with the dipolar ionic detergent CHAPS (3-(3-cholamidopropyl-dimethylammonio)-1-propane-sulfonate). This provided an extract containing FNR and PC as its principal protein components, which could be rapidly separated from one another by chromatography on an anion-exchange column. FNR was purified to homogeneity (as judged from sodium dodecyl sulfate gel electrophoresis and the ratio between protein and flavin absorption maxima), using chromatography on phosphocellulose followed by batchwise adsorption to, and elution from hydroxylapatite. Plastocyanin was further purified on a Sephadex G-75 molecular sieve column.A typical yield, obtained in 3–4 days from 1 kg of deveined spinach leaves, was 7 mg of pure FNR (a single protein of Mr=37,000) and 3.5 mg of plastocyanin.Abbreviations CHAPS- 3-(3-cholamidopropyl-dimethylammonio)-1-propanesulfonate) - Chl- chlorophyll - FNR- ferredoxin-NADP+ oxidoreductase - Mops- 3-(N-morpholino) propanesulfonic acid - PC- plastocyanin - PMSF- phenylmethanesulfonylfluoride - SDS- sodium dodecyl sulfate - SDS-PAGE- sodium dodecyl sulfate polyacrylamide gel electrophoresis - Tricine- N-tris (hydroxymethyl) methylglycine  相似文献   

12.
The enzyme ferredoxin-NADP(+) oxidoreductase (FNR) from Synechococcus sp. PCC 7002 has an extended structure comprising three domains (FNR-3D) (Schluchter, W. M., and Bryant, D. A. (1992) Biochemistry 31, 3092-3102). Phycobilisome (PBS) preparations from wild-type cells contained from 1.0 to 1.6 molecules of FNR-3D per PBS, with an average value of 1.3 FNR per PBS. A maximum of two FNR-3D molecules could be specifically bound to wild-type PBS via the N-terminal, CpcD-like domain of the enzyme when exogenous recombinant FNR-3D (rFNR-3D) was added. To localize the enzyme within the PBS, the interaction of PBS and their substructures with rFNR-3D was further investigated. The binding affinity of rFNR-3D for phycocyanin (PC) hexamers, which contained a 22-kDa proteolytic fragment derived from CpcG, the L(RC)(27) linker polypeptide, was higher than its affinity for PC hexamers containing no linker protein. PBS from a cpcD3 mutant, which lacks the 9-kDa, PC-associated rod linker, incorporated up to six rFNR-3D molecules per PBS. PBS of a cpcC mutant, which has peripheral rods that contain single PC hexamers, also incorporated up to six rFNR-3D molecules per PBS. Direct competition binding experiments showed that PBS from the cpcD3 mutant bound more enzyme than PBS from the cpcC mutant. These observations support the hypothesis that the enzyme binds preferentially to the distal ends of the peripheral rods of the PBS. These data also show that the relative affinity order of the PC complexes for FNR-3D is as follows: (alpha(PC)beta(PC))(6)-L(R)(33) > (alpha(PC)beta(PC))(6)-L(RC)(27) > (alpha(PC)beta(PC))(6). The data suggest that, during the assembly of the PBS, FNR-3D could be displaced to the periphery according to its relative binding affinity for different PC subcomplexes. Thus, FNR-3D would not interfere with the light absorption and energy transfer properties of PC in the peripheral rods of the PBS. The implications of this localization of FNR within the PBS with respect to its function in cyanobacteria are discussed.  相似文献   

13.
14.
Molecular genetic analysis of FNR-dependent promoters   总被引:38,自引:17,他引:21  
  相似文献   

15.
Arabidopsis thaliana contains two photosynthetically competent chloroplast‐targeted ferredoxin‐NADP+ oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F1 (fnr1 × fnr2) and F2 (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment‐protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non‐photochemical quenching (NPQ) was higher and the rate of P700+ re‐reduction was faster in the mutant plants. The slight over‐reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de‐epoxidation state of xanthophylls, as well as the content of α‐tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.  相似文献   

16.
17.
18.
Two ferredoxin-dependent proteins, nitrite reductase and glutamate synthase, play a role in nitrate assimilation during the anaerobic germination of rice (Oryza sativa L.). This paper reports the expression of the root form of ferredoxin-NADP+ oxidoreductase (FNR), the protein responsible for providing reduced ferredoxin in rice coleoptiles. Using an antibody against FNR, a protein with the expected molecular mass for root FNR (35 kDa) was recognized by Western blot analysis in extracts from aerobic and anaerobic coleoptiles. The enzyme is synthesized de novo, as shown by immunoprecipitation of the radiolabeled 35-kDa protein from anaerobic seedlings grown in the presence of [35S]methionine. Northern blot analysis with specific probes for root and leaf FNR showed the presence of mRNA for the root form but not for the leaf form, in both aerobic and anaerobic rice coleoptiles. The inductive effect of exogenous nitrate on the expression of FNR is further evidence for the presence of the root type of FNR in rice coleoptiles. The importance of the expression of root FNR during the anaerobic development of rice seedlings is discussed. Received: 7 October 1996 / Accepted: 22 January 1997  相似文献   

19.
Regulation and over-expression of the fnr gene of Escherichia coli   总被引:33,自引:0,他引:33  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号