首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1–60), functional richness (1–4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants.  相似文献   

2.
Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23–31% that of the control.  相似文献   

3.
4.
Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s?1 m?2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes.  相似文献   

5.
The origins of the biological complexity and the factors that regulate the development of community composition, diversity and richness in soil remain largely unknown. To gain a better understanding of how bacterial communities change during soil ecosystem development, their composition and diversity in soils that developed over c. 77 000 years of intermittent aeolian deposition were studied. 16S rRNA gene clone libraries and fatty acid methyl ester (FAME) analyses were used to assess the diversity and composition of the communities. The bacterial community composition changed with soil age, and the overall diversity, richness and evenness of the communities increased as the soil habitat matured. When analysed using a multivariate Bray-Curtis ordination technique, the distribution of ribotypes showed an orderly pattern of bacterial community development that was clearly associated with soil and ecosystem development. Similarly, changes in the composition of the FAMEs across the chronosequence were associated with biomarkers for fungi, actinomycetes and Gram-positive bacteria. The development of the soil ecosystem promoted the development of distinctive microbial communities that were reminiscent of successional processes often evoked to describe change during the development of plant communities in terrestrial ecosystems.  相似文献   

6.
7.
8.
Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively ‘long’ chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00∼0.14 mg/g soil, soil organic carbon pools ranged from 0.6∼2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to ∼5 ng N fixed/cm2/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and β-l,4-N-acetyl-glucosa-minidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.  相似文献   

9.
10.
Schipper  L.A.  Lee  W.G. 《Plant and Soil》2004,262(1-2):151-158
Ultramafic soils are colonised by plant communities adapted to naturally elevated heavy metal content but it is not known whether soil microbial communities are similarly adapted to heavy metals. We measured microbial properties of six ultramafic soils that ranged in heavy metal content to test whether microbial diversity would decrease and respiratory quotient (microbial respiration:biomass) increase due to the stress imposed by increasing metal content. Soil samples were collected from beneath Nothofagus solandri var. cliffortioides tall forest, tall Leptospermum scoparium shrubland, open Leptospermum scoparium shrubland, an open Leptospermum scoparium shrubland with the rare ultramafic endemic Celmisia spedenii, a mixed divaricate shrubland, and a red tussock (Chionochloa rubra) grassland on the Dun Mountain Ophiolite belt, New Zealand. Samples were analysed for catabolic evenness using the catabolic response profile technique, microbial biomass, microbial respiration, and soil properties (pH, total carbon, total nitrogen, magnesium and total or extractable chromium and nickel). The sites differed in base saturation, pH and concentrations of metals, particularly magnesium, chromium and nickel, properties that are a major determinant of the plant communities that develop. Microbial biomass and respiration, catabolic evenness (range of 19.1 to 22.7) and the respiratory quotient were not correlated to any of the measured soil chemical properties. Factor analysis of the respiratory responses showed that the microbial communities under each vegetation type were distinct. The second factor extracted was correlated to total carbon (r 2=0.62, P<0.01), basal respiration (r 2=0.55, P<0.01) and microbial biomass (r 2=0.65, P<0.01). Increasing metals concentrations had no direct impact on microbial diversity, biomass, respiration or community energetics. However, we suggest that metal concentrations may have exerted an indirect effect on the structure of the microbial communities through control of the vegetation community and litter inputs of carbon to the soil.  相似文献   

11.
濒危植物四合木(Tetraena mongolica)为我国特有的蒺藜科单种属落叶小灌木.对四合木林地昆虫群落进行了调查,共得昆虫标本11363号,263种.隶属于67个科(或总科)11个目.同翅目的个体数量和优势度指数最高;膜翅目的物种丰富度和多样性指数最大;双翅目的均匀度最大.数量优势类群(>10%)为木虱和叶蝉类,常见类群(1%~10%)是象甲、小蜂、粒脉蜡蝉、拟步甲、蚂蚁、蝽科、皮蝽、盲蝽、斑翅蝗科昆虫.营养结构中植食性类群在种类和数量上占绝对优势,其中的吸食类昆虫优势度最大;天敌昆虫以寄生性类群为主,多样性最高;捕食性和中性昆虫的种类和数量相对较少,但捕食者的均匀度最高.灌木层与草本层相比,灌木层昆虫群落的物种丰富度和个体数量明显占优;优势种的优势度大.而草本层昆虫群落的多样性和均匀度高.2层整体的相似性低.膜翅目的共有种最多.  相似文献   

12.
Xu  Tianle  Chen  Xiao  Hou  Yanhui  Zhu  Biao 《Plant and Soil》2021,461(1-2):137-150
Plant and Soil - Plant P acquisition strategies are driven by multiple belowground morphological and physiological traits as well as interactions among these traits. This study aimed to...  相似文献   

13.
The viable and non-viable fractions of the bacterial community in a 2347-year-old permafrost soil from Spitsbergen were subjected to a comprehensive investigation using culture-independent and culture-dependent methods. LIVE/DEAD BacLight staining revealed that 26% of the total number of bacterial cells were viable. Quantitatively, aerobic microcolonies, aerobic colony-forming units and culturable anaerobic bacteria comprised a minor fraction of the total number of viable bacteria, which underlines the necessity for alternative cultivation approaches in bacterial cryobiology. Sulfate reduction was detected at temperatures between -2 degrees C and 29 degrees C while methanogenesis was not detected. Bacterial diversity was high with 162 operational taxonomic units observed from 800 16S rDNA clone sequences. The 158 pure cultures isolated from the permafrost soil affiliated with 29 different bacterial genera, the majority of which have not previously been isolated from permafrost habitats. Most of the strains isolated were affiliated to the genera Cellulomonas and Arthrobacter and several of the pure cultures were closely related to bacteria reported from other cryohabitats. Characterization of viable bacterial communities in permafrost soils is important as it will enable identification of functionally important groups together with the as yet undescribed adaptations that bacteria have evolved for surviving subzero temperatures for millennia.  相似文献   

14.
Plant and Soil - Arsenic (As) cycling in flooded rice paddies is driven by soil microbes which among other transformations can cause conversion between inorganic and organic As species. Silicon...  相似文献   

15.
Bacteria and fungi are ubiquitous in the near-surface atmosphere where they may impact on the surrounding environment and human health, especially in coastal megacities. However, the diversity, composition, and seasonal variations of these airborne microbes remain limited. This study investigated the airborne microbes of the near-surface atmosphere in coastal megacity Qingdao over one year. It was found that the sample in summer displayed the highest bacterial and fungal diversity, while sample in winter exhibited the lowest bacterial and fungal diversity. Proteobacteria was the dominating bacteria, and Dothideomycetes was the most dominating fungi in the near-surface atmosphere, which took up 53–76 and 49–78% relative abundance, respectively. However, the bacterial diversity and community composition had significant seasonal variations. These data suggest that a complex set of environmental factors, including landscaping ratio, solar radiation temperature, and marine microorganisms, can affect the composition of airborne microbes in the near-surface atmosphere in coastal megacity. The analysis of the pathogenic microorganisms or opportunistic pathogenic microorganisms existed in the near-surface atmosphere revealed that the relative abundance of pathogenic microorganisms in autumn was the highest. The main pathogenic microorganisms or opportunistic pathogenic microorganisms were Acinetobacter baumannii (accounting for up to 9.93% relative abundance), Staphylococcus epidermidis (accounting for up to 11.26% relative abundance), Mycobacterium smegmatis (accounting for up to 3.68% relative abundance), Xanthomonas oryzae pv. oryzae (accounting for up to 5.36% relative abundance), which may be related to certain human or plant diseases in specific environments or at certain seasons. Therefore, the investigation of airborne microbial communities of near-surface atmosphere in coastal megacities is very important to both the understanding of airborne microbes and public health.  相似文献   

16.
Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.  相似文献   

17.
18.
The bacterial community structures (BCSs) of Cerrado soils cultivated under conventional tillage (CT), no-tillage (NT) and under native Cerrado (NC) vegetation were evaluated using PCR/DGGE of bacterial 16S rRNA (rrs) and rpoB genes and of Pseudomonas group genes. Soil chemical analysis, microbial biomass and the enzyme activities were also evaluated and correlated with the BCS measurements. The multivariate ordinations of DGGE profiles showed differences between the BCS of the NC area and those from cultivated areas. The BCSs of the CT and NT areas also differed in all DGGE fingerprints, including changes in the profile of Pseudomonas populations, indicating that agricultural systems can also be responsible for changes within specific microbial niches, although the clearest differences were found in the rpoB profiles. The MRPP analysis demonstrated significant differences between the BCSs from different soil layers of NT areas based on all gene fingerprints and those of NC areas based on bacterial 16S rRNA and rpoB genes fingerprints. No differences were observed in the microbial fingerprints of CT samples from different depths, indicating that ploughing affected the original BCS stratification. The BCS from NC areas, based on all gene fingerprints, could be related to higher levels of soil acidity and higher amounts of MBC and of phosphatase activity. In contrast, the BCSs from cultivated areas were related to higher levels of Ca + Mg, P and K, likely as a result of a history of chemical fertilisation in these areas. The relationships between rpoB and Pseudomonas BCSs and all chemical and biochemical properties of soils were significant, according to a Mantel test (P < 0.05), indicating that the different changes in soil properties induced by soil use or management may drive the formation of the soil BCS.  相似文献   

19.
长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响   总被引:16,自引:0,他引:16  
稻田土壤是“迷失碳”的重要吸纳场所之一,也是温室气体(CH4和N2O等)的重要排放源.大气温室气体的动态变化与土壤碳氮转化的微生物过程紧密相关.以湖南桃江国家级稻田肥力变化长期定位试验点为平台,采用PCR-克隆测序和实时荧光定量PCR技术,研究不施肥(CK)、施氮磷钾肥(NPK)和氮磷钾肥+秸秆还田(NPKS)3种长期施肥制度(>25 a)对稻田土壤细菌和古菌群落结构及数量的影响.细菌和古菌16S rRNA基因文库分析结果表明:稻田土壤细菌主要类群为变形菌、酸杆菌、绿弯菌,而古菌主要为泉古菌和广古菌.长期施肥导致土壤细菌和古菌种群结构产生明显差异,与CK相比,NPK和NPKS处理稻田土壤的变形菌、酸杆菌和泉古菌相对丰度增加.LIBSHUFF软件分析结果也表明,16S rRNA基因文库在CK、NPK及NPKS处理间存在显著差异.3种施肥处理的稻田土壤细菌16S rRNA基因拷贝数为每克干土0.58× 1010~1.06×1010个,古菌为每克干土1.16×106 ~ 1.72×106个.施肥(NPK和NPKS)后,细菌和古菌的多样性和数量增加,且NPKS>NPK.说明长期施肥显著影响土壤细菌和古菌群落结构、多样性及数量.  相似文献   

20.
Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号