首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

Phosphorus from phytate, although constituting the main proportion of organic soil P, is unavailable to plants. Despite the well-known effects of rhizosphere trophic relationships on N mineralization, no work has been done yet on P mineralization. We hypothesized that the interactions between phytate-mineralizing bacteria, mycorrhizal fungi and bacterial grazer nematodes are able to improve plant P use from phytate.

Methods

We tested this hypothesis by growing Pinus pinaster seedlings in agar containing phytate as P source. The plants, whether or not ectomycorrhizal with the basidiomycete Hebeloma cylindrosporum, were grown alone or with a phytase-producing bacteria Bacillus subtilis and two bacterial-feeder nematodes, Rhabditis sp. and Acrobeloides sp. The bacteria and the nematodes were isolated from ectomycorrhizal roots and soil from P. pinaster plantations.

Results

Only the grazing of bacteria by nematodes enhanced plant P accumulation. Although plants increased the density of phytase-producing bacteria, these bacteria alone did not improve plant P nutrition. The seedlings, whether ectomycorrhizal or not, displayed a low capacity to use P from phytate.

Conclusions

In this experiment, the bacteria locked up the phosphorus, which was delivered to plant only by bacterial grazers like nematodes. Our results open an alternative route for better utilization of poorly available organic P by plants.  相似文献   

2.

Aims

The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg?kg?1), under elevated atmosphere CO2 (eCO2).

Methods

Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol or Calcarosol soil, with two contrasting P fertilizer histories for each soil, and exposed to ambient (380 ppm) or eCO2 (700 ppm) for 6 weeks.

Results

The NaHCO3-extractable inorganic P (Pi) in the rhizosphere was depleted by both wheat and chickpea in all soils, but was not significantly affected by CO2 treatment. However, NaHCO3-extractable organic P (Po) accumulated, especially under eCO2 in soils with high P status. The NaOH-extractable Po under eCO2 accumulated only in the Vertosol with high P status. Crop species did not exhibit different eCO2-triggered capabilities to access any P pool in either soil, though wheat depleted NaHCO3-Pi and NaOH-Pi in the rhizosphere more than chickpea. Elevated CO2 increased microbial biomass C in the rhizosphere by an average of 21 %. Moreover, the size in Po fractions correlated with microbial C but not with rhizosphere pH or phosphatase activity.

Conclusion

Elevated CO2 increased microbial biomass in the rhizosphere which in turn temporally immobilized P. This P immobilization was greater in soils with high than low P availability.  相似文献   

3.

Background and aims

Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability.

Methods

A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E) on soil organic matter stocks and net N mineralization.

Results

A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0–15?cm soil layer. Field incubations conducted every 4?weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64?kg?ha?1?yr?1, respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization.

Conclusions

Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.  相似文献   

4.

Aim

This study aimed at predicting how sub-alpine coniferous ecosystems respond to global changes in the Eastern Tibetan Plateau by understanding soil microbial communities and activities, as well as variation in the quality and quantity of soil organic matter.

Methods

An experiment was conducted to examine soil microbial communities and their related soil processes in rhizospheric soil of two coniferous species that were exposed to two levels of temperature (unwarmed and infrared heater warming) and two levels of nitrogen (unfertilized and 25 g N m?2 a?1) from April 2007.

Results

Four-year night warming alone slightly affected the phospholipid fatty acid contents of the microbial community. However, the combination of nitrogen addition and soil warming significantly affected soil microbial composition while reducing the biomass of major microbial groups and the activities of most enzymes, especially in Abies faxoniana plots. The combination of warming and nitrogen addition increased soil labile C and N pools in Picea asperata plots and was beneficial for soil recalcitrant C, as well as for labile and total C and N pools in A. faxoniana plots.

Conclusion

Results indicated that future warming will slightly affect soil microbial communities and their related soil processes. However, warming combined with high nitrogen deposition will significantly constrain soil microbial biomass and enzyme activities, consequently increasing soil C and N pools in sub-alpine coniferous forests of this region.  相似文献   

5.

Aims

Few studies have focused on changes in the physical and chemical properties of soils that are induced by grazing at high altitudes. Our aim was to identify potential responses of soil to grazing pressure on the semiarid steppe of the northern Tibetan Plateau and their probable causes.

Methods

Fractal geometry to describe soil structure, soil dynamics, and physical processes within soil is becoming an increasingly useful tool that allows a better understanding of the performance of soil systems. In this study, we sampled four experimental areas in the northern part of the Tibetan Plateau under different grazing intensities: ungrazed, lightly grazed, moderately grazed and heavily grazed plots. Fractal methods were applied to characterise particle-size distributions and pore patterns of soils under different grazing intensities.

Results

Our results reveal a highly significant decrease in the fractal dimensions of particle size distributions (D 1 ) and the fractal dimensions of all pores (D 2 ) with increasing grazing intensity. Soil organic carbon (SOC), total N and total P concentrations increased significantly with decreasing grazing intensity. We did not find differences in soil pH in response to grazing.

Conclusions

Grazing induced a significant deterioration of the physical and chemical topsoil properties in the semiarid steppe of the northern Tibetan Plateau. Fractal dimensions can be a useful parameter for quantifying soil degradation due to human activities.  相似文献   

6.

Background and aims

Land-use change often markedly alters soil carbon (C) and nitrogen (N) pool sizes with implications for climate change and soil sustainability. The objective of this research was to study the effect of converting paddy fields to Lei bamboo (Phyllostachys praecox) stands on soil C and N and other nutrient pools as well as the chemical structure of soil organic C (SOC) in the soil profile.

Methods

Soils (Anthrosols) from four adjacent paddy field–bamboo forest pairs with a known land-use history were sampled from Lin’an County, Zhejiang Province. Soil water soluble organic C (WSOC), hot water soluble organic C (HWSOC), microbial biomass C (MBC), readily oxidizable C (ROC), water soluble organic N (WSON), and other soil chemical and physical properties were determined. Soil organic C functional group compositions were determined by 13C-nuclear magnetic resonance (NMR).

Results

Concentrations of soil available P, available K, and different N forms increased (P?<?0.05) by the land-use conversion. Higher concentrations of SOC and total N (TN) were observed in the subsoil (20–40 and 40–60 cm soil layers) but not in the topsoil (0–20 cm layer) in the bamboo stands than in the paddy fields. The storage of SOC and TN in the entire soil profile (0–60 cm) increased by 56.7 and 70.7 %, respectively, after the land-use change. The increases in the SOC stock of the three soil layers were 11.0, 14.3, and 9.5 Mg C ha?1, respectively. The conversion decreased WSOC concentrations in the subsoil but increased the ROC concentration in the topsoil. Solid-state NMR spectroscopy of soil samples showed that the conversion increased (P?<?0.05) the O-alkyl C content while decreased the aromatic C content, alkyl C to O-alkyl C ratio (A/O-A), and aromaticity of SOC.

Conclusions

Conversion of paddy fields to bamboo stands increased soil nutrient availability, and SOC and TN stocks. Effects of land-use change on C pools and C chemistry of SOC varied among different soil layers in the profile. The impact of the land-use conversion on soil organic C pools was not restricted to the topsoil, but changes in the subsoil were equally large and should be accounted for.  相似文献   

7.

Background and aims

Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha?1 yr?1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats.

Methods

Primary succession stages were sampled, including bare sand, and vegetation dominated by Polytrichum piliferum, Campylopus introflexus, lichens and grasses respectively, representing a series of vegetation types in undisturbed drift sand sites with succession starting on bare sand containing virtually no organic matter. Microbial characteristics and potential N mineralization were analysed in a laboratory experiment.

Results

Organic matter accumulated during succession, resulting in a lower pH and in higher microbial biomass (bacteria and fungi), respiration and net N mineralization. The increase in respiration and N mineralization was largely due to the development of an ectorganic layer in the middle stages of succession. The observed effects of N deposition were (1) decrease of microbial biomass, (2) higher net N mineralization per m2, (3) higher levels of free nitrogen in the soil, and (4) a higher microbial N:P ratio.

Conclusions

Elevated N deposition leads to higher N availability which may cause accelerated succession.  相似文献   

8.

Aims

Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

Methods

Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

Results

Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

Conclusions

Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

9.

Background and aims

The warming of the planet in recent decades has caused rapid, widespread permafrost degradation on the Qinghai–Tibet Plateau. These changes may significantly affect soil moisture content and nutrient supply, thereby affecting ecosystem structure and function. This study aimed to describe the dynamic changes in thaw depth, assess the relationship between thaw depth and soil moisture content, and analyze the changes in species composition and water-use efficiency in response to permafrost degradation.

Methods

We surveyed species composition, thaw depth, ground temperature, soil moisture, nutrient content, and foliar stable carbon isotope compositions to gain insights into the response of alpine grassland ecosystems to permafrost degradation on the Qinghai-Tibet Plateau.

Results

Moisture content of the surface layer decreased with increasing thaw depth. The correlation between thaw depth and surface soil moisture content was strongest in June and decreased in July and August. The strongest correlation occurred at a depth of 20 cm to 30 cm. The dominant species shifted from Cyperaceae in alpine meadow to mesoxerophytes in alpine steppe before finally shifting to xerophytes in alpine desert steppe. Thaw depth correlation was significantly negative with organic C content (r?=??0.49, P?<?0.05) and with total N content (r?=??0.62, P?<?0.01). The leaf δ13C of Carex moorcroftii increased with increasing thaw depth and followed a linear relationship (R 2?=?0.85, P?=?0.008).

Conclusions

Permafrost degradation decreases surface soil moisture and soil nutrient supply capacity. Increasing permafrost degradation decreases the number of plant families and species, with hygrophytes and mesophytes gradually replaced by mesoxerophytes and xerophytes. The water-use efficiency of plants improved in response to increasing water stress as surface layers dried during permafrost degradation. Permafrost on the Qinghai–Tibetan Plateau is expected to further degrade as global warming worsens. Therefore, more attention should be dedicated to the response of alpine ecosystems during permafrost degradation.  相似文献   

10.
Fayez Raiesi 《Plant and Soil》2012,351(1-2):161-175

Background and Aims

Land abandonment might be an alternative management for restoring soil conditions and C from prolonged cultivation and agricultural practices. In the present study, the influence of 18–22?years of land abandonment on soil properties, C dynamics and microbial biomass was evaluated in closely situated wheat and alfalfa farmlands, and abandoned lands on calcareous soils, Central Iran.

Methods

Soil properties of the 0–15 and 15–30?cm depths from abandoned lands were compared to those from conventionally cultivated lands (i.e., continuous wheat–fallow and alfalfa–wheat rotation) common in calcareous soils of Central Zagros Mountains.

Results

Soil bulk density in the 0–15 and 15–30?cm layers decreased significantly while total porosity increased significantly in abandoned lands. Generally, soil aggregate stability tended to increase within the abandoned fields owing to increased water-stable macro-aggregates. Soil organic C (OC) contents (g kg?1) and pools (Mg ha?1) in the 0–15?cm soil layer increased significantly in abandoned lands compared with cultivated lands, with no effect in the 15–30?cm soil layer after 18–22?years of land abandonment, suggesting the restoration of C is pronounced in the upper 0–15?cm soil depth . The total C accumulation in abandoned lands was 7.0?Mg?C?ha?1 for the entire sampling depth (0–30?cm) over the 18–22?years of land abandonment, which was 26% greater relative to cultivated lands. Carbon mineralization (Cmin) followed a trend similar to organic C, whereas C turnover (Cmin/OC ratio) was slightly greater in wheat fields. However, soil microbial biomass C (MBC) did not vary considerably among the three land uses.

Conclusions

In brief, improvements, albeit slowly, in soil properties of the top layer with the cessation of cultivation indicated that land abandonment may result in enhanced soil C sequestration, and would maintain fertility and productivity of the farmlands of semi-arid climates.  相似文献   

11.

Background and aims

Intercropping of legumes and cereals appears as an alternative agricultural practice to decrease the use of chemical fertilizers while maintaining high yields. A better understanding of the biotic and abiotic factors determining interactions between plants in such associations is required. Our study aimed to analyse the effect of earthworms on the legume–cereal interactions with a focus on the modifications induced by earthworms on the forms of soil phosphorus (P).

Methods

In a glasshouse experiment we investigated the effect of an endogeic earthworm (Allolobophora chlorotica) on the plant biomass and on N and P acquisition by durum wheat (Triticum turgidum durum L.) and chickpea (Cicer arietinum L.) either grown alone or intercropped. The modifications of the different organic and inorganic P forms in the bulk soil were measured.

Results

There was no overyielding of the intercrop in the absence of earthworms. Earthworms had a strong influence on biomass and resource allocation between roots and shoots whereas no modification was observed in terms of total biomass production and P acquisition. Earthworms changed the interaction between the intercropped species mainly by reducing the competition for nutrients. Facilitation (positive plant–plant interactions) was only observed for the root biomass and P acquisition in the presence of earthworms. Earthworms decreased the amount of organic P extracted with NaOH (Po NaOH), while they increased the water soluble inorganic P (Pi H2O) content.

Conclusions

In this experiment, earthworms could be seen as “troubleshooter” in plant–plant interaction as they reduced the competition between the intercropped species. Our study brings new insights into how earthworms affect plant growth and the P cycle.  相似文献   

12.
Richard A. Gill 《Plant and Soil》2014,374(1-2):197-210

Background and aims

Drivers of ecosystem dynamics that are under human influence range from local, land-management decisions to global processes such as warming temperatures and N deposition. The goal of this study was to understand how multiple, potentially interacting factors influence net primary production, N mineralization, and water and soil CO2 fluxes.

Methods

Here I report on a three-year experiment that manipulated air temperature using ITEX passive warming cones and N deposition in a mountain meadow ecosystems that were historically grazed or protected from grazing.

Results

The strongest and most consistent effect was due to the legacy of grazing, with previously grazed sites having lower primary production, lower soil respiration rates, lower soil moisture, and lower soil C and N stocks than historically ungrazed sites. Warming increased soil respiration, but the effect was transient, and decreased over the 3-year study. Nitrogen addition increased primary production in the second and third year of the experiment but had no significant effect on soil respiration. The effect of historical grazing on primary production was approximately double the effect of N addition. Temperature and N deposition rarely interacted except for increasing N availability during the warm, wet growing season of 2004.

Conclusions

These findings indicate that the legacies of land use, with their influence on plant community composition and hydrologic processes, are locally more important than short-term step changes in temperature and nutrient availability.  相似文献   

13.

Aims

Grassland conversion to cropland (GCC) may result in loss of a large amount of soil organic carbon (SOC). However, the assessment of such loss of SOC still involves large uncertainty due to shallow sampling depth, soil bulk density estimation and spatial heterogeneity. Our objectives were to quantify changes in SOC, soil total nitrogen (STN) and C:N ratio in 0–100 cm soil profile after GCC and to clarify factors influencing the SOC change.

Methods

A nest-paired sampling design was used in six sites along a temperature gradient in Northeast China.

Results

SOC change after GCC ranged from ?17 to 0 Mg ha?1 in 0–30 cm soil layer, recommended by IPCC, across the six sites, but ranged from ?30 to 7 Mg ha?1 when considering 0–100 cm. We found a linear relationship between SOC change in 30–100 cm and that in 0–30 cm profile (ΔC30?100?=?0.35ΔC0?30, P?<?0.001), suggesting that SOC change in 0–100 cm was averagely 35 % higher than that in 0–30 cm. The change in STN showed a similar pattern to SOC, and soil C:N ratio did not change at most of sites. On the other hand, SOC loss after GCC was greater in soils with higher initial SOC content or in croplands without applying chemical fertilizers. Furthermore, SOC loss after GCC decreased with falling mean annual temperature (MAT), and even vanished in the coldest sites.

Conclusions

The magnitude of SOC loss following GCC in Northeast China is lower than the global average value, partly due to low MAT here. However, the current low SOC loss can be intensified by remarkable climate warming in this region.  相似文献   

14.

Aims

Soil inorganic carbon (SIC), primarily calcium carbonate, is a major reservoir of carbon in arid lands. This study was designed to test the hypothesis that carbonate might be enhanced in arid cropland, in association with soil fertility improvement via organic amendments.

Methods

We obtained two sets (65 each) of archived soil samples collected in the early and late 2000’s from three long-term experiment sites under wheat-corn cropping with various fertilization treatments in northern China. Soil organic (SOC), SIC and their Stable 13C compositions were determined over the range 0–100 cm.

Results

All sites showed an overall increase of SIC content in soil profiles over time. Particularly, fertilizations led to large SIC accumulation with a range of 101–202 g C m?2 y?1 in the 0–100 cm. Accumulation of pedogenic carbonate under fertilization varied from 60 to 179 g C m?2 y?1 in the 0–100 cm. Organic amendments significantly enhanced carbonate accumulation, in particular in the subsoil.

Conclusions

More carbon was sequestrated in the form of carbonate than as SOC in the arid cropland in northern China. Increasing SOC stock through long-term straw incorporation and manure application in the arid and semi-arid regions also enhanced carbonate accumulation in soil profiles.  相似文献   

15.
Nitrogen (N) is a crucial nutrient for soil biota, and its cycling is determined by the organic carbon decomposing process. Some endophytic fungi are latent saprotrophs that trigger their saprotrophic metabolism to promote litter organic matter cycling as soon as the host tissue senesces or dies. However, the effects of endophytic fungi on litter and soil N dynamics in vitro have rarely been investigated. In this study, we investigated N dynamics (total and mineral N) in both litter and soil in incubations of a pure culture of an endophytic fungus Phomopsis liquidambari with litter and following soil burial of the litter. Soil enzymes and microbial communities participating in the N transformations were also investigated. A pure culture of P. liquidambari released litter NH 4 + –N in the initial stages (10 days) of the incubation. However, following soil burial, the presence of both P. liquidambari and soil ammonia-oxidizing bacteria (AOB) resulted in an increase in soil NO 3 ? –N. These results indicate that the endophytic fungus P. liquidambari in vitro stimulates organic mineralization and promote NH 4 + –N release. Such effects triggered soil AOB-driven nitrification process.  相似文献   

16.
三江平原湿地土壤磷形态转化动态   总被引:7,自引:2,他引:7  
采用Hedley连续浸提法对三江平原湿地小叶章草甸土壤磷形态的季节动态进行研究,分析生长季土壤磷形态之间的相互转化及其可能的驱动机制。结果表明:小叶章草甸土壤有机磷(TPo)总量高于无机磷(TPi),NaOH溶液浸提的无机磷(NaOH-Pi)和有机磷形态(NaOH-Po)分别占总无机磷(TPi)和总有机磷(TPo)比重最大。各无机磷形态均有明显的季节变化,Resin-P和Conc.HCl-Pi季节变异性大,生长结束后含量较初期降低,其他形态无机磷含量有不同程度的升高。有机磷组分中NaOH-Po的季节波动最明显,生长季末期较初期含量降低,其他有机磷形态和Residual-P生长季初、末期含量变化不大,波动也相对较小。TP、TPo季节变化整体趋势相似,二者含量变化达到极显著相关。各无机磷形态变化主要受植物生长节律影响;水分、热量等环境条件也是磷的形态转化的重要驱动因子,并可能间接通过影响土壤动物、微生物等的活性推动土壤磷的循环。小叶章草甸土壤有机磷矿化释放的无机磷通常都首先被土壤金属氧化物固定,再经过无机磷之间的转化过程为生物利用,因此三江平原湿地土壤磷大量释放的可能性很小。  相似文献   

17.

Key message

GmPAP4 , a novel plant PAP gene in soybean, has phytase activity. Over-expressing GmPAP4 can enhance Arabidopsis growth when phytate is the sole P source in culture.

Abstract

Phosphorus (P) is an important macronutrient for plant growth and development. However, most of the total P in soils is fixed into organic phosphate (Po). Purple acid phosphatase (PAP) can hydrolyze Po in the soil to liberate inorganic phosphate and enhance plant P utilization. We isolated a novel PAP gene, GmPAP4, from soybean (Glycine max). It had an open reading frame of 1,329 bp, encoding 442 amino acid residues. Sequence alignment and phylogenetics analysis indicated that GmPAP4 was similar to other plant PAPs with large molecular masses. Quantitative real-time PCR analysis showed that the induced expression of GmPAP4 was greater in P-efficient genotype Zhonghuang15 (ZH15) than in P-inefficient genotype Niumaohuang (NMH) during the periods of flowering (28–35 days post phytate stress; DPP) and pod formation (49–63 DPP). Moreover, peak expression, at 63 DPP, was about 3-fold higher in ‘ZH15’ than in ‘NMH’. Sub-cellular localization showed that GmPAP4 might be on plasma membrane or in cytoplasm. Over-expressing GmPAP4 in Arabidopsis resulted in significant rises in P acquisition and utilization compared with the wild-type (WT). Under phytate condition, transgenic Arabidopsis plants showed increases of approximately 132.7 % in dry weight and 162.6 % in shoot P content compared with the WT. Furthermore, when phytate was added as the sole P source in cultures, the activity of acid phosphatase was significantly higher in transgenic plants. Therefore, GmPAP4 is a novel PAP gene that functions in plant’s utilization of organic phosphate especially under phytate condition.  相似文献   

18.

Aims and Background

Many plants preferentially grow roots into P-enriched soil patches, but little is known about how the presence of arbuscular mycorrhizal fungi (AMF) affects this response.

Methods

Lotus japonicus (L.) was grown in a low-P soil with (a) no additional P, (b) homogeneous P (28 mg pot?1), (c) low heterogeneous P (9.3 mg pot?1), and (d) high heterogeneous P (28 mg pot?1). Each P treatment was combined with one of three mycorrhiza treatments: no mycorrhizae, Glomus intraradices, indigenous AMF. Real-time PCR was used to assess the abundance of G. intraradices and the indigeneous AMF G. mosseae and G. claroideum.

Results

Mycorrhization and P fertilization strongly increased plant growth. Homogeneous P supply enhanced growth in both mycorrhizal treatments, while heterogeneous P fertilization increased biomass production only in treatments with indigenous AMF inoculation. Preferential root allocation into P-enriched soil was significant only in absence of AMF. The abundance of AMF species was similar in P-enriched and unfertilized soil patches.

Conclusion

Mycorrhization may completely override preferential root growth responses of plants to P- patchiness in soil. The advantage of this effect for the plants is to give roots more freedom to forage for other resources in demand for growth and to adapt to variable soil conditions.  相似文献   

19.

Background and aims

There is ample experimental evidence for shifts in plant community composition under climate warming. To date, however, the underlying mechanisms driving these compositional shifts remain poorly understood.

Methods

The amount and form of nitrogen (N) available to plants are among the primary factors limiting productivity and plant coexistence in terrestrial ecosystems. We conducted a short-term 15N tracer experiment in a ten-year warming and grazing experiment in an alpine grassland to investigate the effects of warming and grazing on plant uptake of NO3?-N, NH4+-N, and glycine-N. Four dominant plant species (Kobresia humilis, Potentilla anseria, Elymus nutans, Poa annua) were selected. Results We found that 10-years of warming decreased plant uptake of inorganic N by up to 80% in all species. In contrast, warming increased the uptake of organic N in K. humilis, P. anseria, and E. nutans but not in P. annua. Results showed that plant relative biomass increased hyperbolically with the ratio of the plant species total uptake of available N and plant community uptake of available N. And a significant positive correlation between plant species uptake of soil glycine-N and the uptake of total available N.

Conclusions

The stable relative biomass of plant species is largely dependent on organic N uptake by plants. We conclude that plant organic N uptake maintains species dominance under long-term warming.
  相似文献   

20.

Background and aims

As low initial uptake and essentially zero later uptake limit efficacy of N fertilization for temperate conifers, we investigated factors limiting long-term tree uptake of residual 15?N-labeled fertilizer.

Methods

We used a pot bioassay to assess availability of 15?N from soil sampled 10 years after fertilization of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand with 15?N-urea (200 kg N ha?1). Douglas-fir seedlings were grown for 2 years in organic (designated LFH) and mineral soil (0–10 cm) layers reconstructed from control and fertilized plots; residual fertilizer N amounted to 10 % of LHF and 5 % of MIN N.

Results

Percentage recovery of residual 15?N in seedlings was not affected by the original season of fertilization (spring vs. fall), but differed by the source of 15?N excess. LFH was a better source of residual 15?N; 12.4 % of residual LFH 15?N was taken up by seedlings and 7.6 % transferred to soil, whereas mineral soil yielded only 8.3 % of residual 15?N to seedling uptake and 2.4 % to LFH. Extractable inorganic N was 2–3 orders of magnitude higher in fallow pots.

Conclusions

Ten-year residual fertilizer 15?N was clearly cycling between LFH and mineral soil and available to seedlings, indicating that other factors such as denitrification, leaching, and asynchrony of soil N mineralization and tree uptake limit long-term residual N fertilizer uptake in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号