首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

2.
The immunological characteristics of a very low density lipoproteins (VLDL) from normal and hypercholesterolemic rat sera were compared using polyspecific antisera to VLDL and high density lipoproteins (HDL) and monospecific antisera to apo-B, apo-C, apo-A-I, and apo-E. Ultracentrifugally isolated VLDL from normal serum were studied by immunodiffusion and found to contain both discrete and associated (with apo-B) apo-C and apo-E, probably in the form of lipid-containing lipoproteins. However, immunoelectrophoresis of whole serum revealed only an associated form of the liporpotein having pre-beta mobility (i.e., VLDL), suggesting that the presence of discrete lipoproteins in isolated VLDL, each containing a single apoprotein family, may represent ultracentrifugal artifacts. Ultracentrifugally isolated VLDL from diet-induced hypercholesterolemic rat serum contained only trace amounts of apo-C and large quantities of apo-E, both of which were totally associated with apo-B. VLDL isolated by ultracentrifugation from perfusate of normal and hypercholesterolemic livers contained only associated lipoprotein complexes made up of apo-B, apo-C, and apo-E in the former but only apo-B and apo-E in the latter. These data suggest that normal VLDL are secreted as lipoprotein complexes containing apo-B, apo-C, and apo-E, which may become destabilized in the circulation. However, VLDL from hypercholesterolemic serum shows a marked diminution in the quantity of apo-C as indicated by the relative incorporation of [3H]leucine in vivo and by polyacrylamide gel electrophoresis of apo-VLDL.  相似文献   

3.
We have found that in vitro lipolysis of human very low density lipoproteins (VLDL) by purified bovine milk lipoprotein lipase (LpL) promotes degradation of the apolipoprotein (apo) B moiety of VLDL. Analysis by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis showed that lipolysis of VLDL by purified LpL for 1 h at 37 degrees C induced the selective degradation of the high Mr apo-B (apo-B-100) from most hypertriglyceridemic VLDL and from a few normolipidemic VLDL into several small fragments with molecular weights ranging from 90,000-490,000. No detectable degradation of apo-B occurred in control VLDL when incubated without LpL. The apo-E moiety of VLDL from certain individuals was also degraded following lipolysis of VLDL, and the extent of degradation of apo-B and -E in VLDL was varied among the individual VLDL. The major degradation products of apo-E, identified from the gel, were 31,000- and/or 28,000-Da species. In contrast to the apo-E moiety of VLDL, purified apo-E was not degraded when incubated with LpL. Incubation of low density lipoproteins (LDL) with LpL showed only a minimal effect on the apoproteins of LDL. When high density lipoprotein (HDL) was included in the lipolysis mixture as an acceptor of lipolytic surface remnants, the apoproteins of HDL remained unaltered, while the apo-B moiety of VLDL remnants in the mixture was degraded. Inclusion of protease inhibitors in the lipolysis mixture prevented the degradation of apo-B, but the hydrolysis of VLDL-triglyceride was minimally affected. A selective degradation of apo-B in VLDL also occurred during lipolysis of VLDL when VLDL was perfused through rat hearts. These results suggest that conformational changes in apo-B and apo-E caused by VLDL lipolysis may increase the susceptibility of apo-B and apo-E to degradation by the proteases co-isolated with VLDL. The consequences of the lipolysis-induced degradation of apo-B and apo-E on changes in metabolic properties of VLDL remnants remain to be determined.  相似文献   

4.
The hypothesis that the apoprotein composition of nascent very-low-density lipoprotein (VLDL) secreted by the hepatocyte is determined by the relative rates of apoprotein synthesis and their affinities of binding to VLDL was tested using chick hepatocytes in monolayer culture. Chick cells were chosen for the study of lipoprotein assembly since estradiol treatment can be used to alter the composition of the apoprotein mixture synthesized by these cells. The secretion of apoprotein (apo) B by estradiol-treated hepatocytes was elevated 4.2-fold above the basal level measured in control cells. Furthermore, estradiol-treated cells secreted apo-II, a major VLDL apoprotein not synthesized prior to estradiol treatment, at a level equivalent to that of apo-B. However, no difference in the secretion of apo-A-I and other newly identified nascent VLDL apoproteins was detected. These changes in relative rates of apoprotein synthesis altered the composition of nascent VLDL secreted by control versus estradiol-induced cells from: apo-B, 22 to 40%; apo-II, 0 to 32%; apo-37 kDa, 14 to 6%; apo-A-I, 31 to 12%; apo-17 kDa, 10 to 4%; apo-9 kDa, 15 to less than 10%; and apo-6 kDa, 8 to less than 2%. To investigate the basis for the preferential incorporation of apo-B and apo-II into nascent VLDL, the relative affinities of the apoproteins for VLDL were compared by measuring their capacities to transfer from VLDL into other lipoprotein or nonlipoprotein density classes. Culture medium containing [3H]leucine-labeled VLDL was incubated with plasma deficient in lipoproteins of rho less than 1.006 g/ml. Within 30 min of incubation at 37 degrees C, 3H-labeled apo-A-I and apo-9 kDa exchanged between VLDL and high-density lipoprotein, whereas apo-37 kDa exchanged between VLDL and the rho greater than 1.21 g/ml fraction. Neither apo-B nor apo-II underwent transfer from nascent VLDL. These results suggest that the relative rates of input of apoproteins into the secretory pathway and their affinities of binding to the nascent VLDL particle determine their extent of incorporation into, and, thus, the apoprotein composition of secreted VLDL.  相似文献   

5.
Uniformly fatty livers from orotic acid-fed rats secreted almost no very low density lipoproteins (VLDL) but normal amounts of nascent high density lipoproteins (HDL) accumulated in perfusates. When lecithin:cholesterol acyltransferase (LCAT) was inhibited, nascent HDL were uniformly discoidal and lacked cholesteryl esters. Lipid and apoprotein compositions of nascent HDL from normal and fatty livers were similar whether LCAT was inhibited or not. Apolipoprotein B-100 was not detected in perfusates of uniformly fatty livers, but small amounts of apolipoprotein B-48 were present in HDL2 fractions. Nascent lipoproteins were not seen in Golgi compartments, but lipid-rich particles were clearly evident in endoplasmic reticulum cisternae adjacent to the cis face of the Golgi complex, suggesting that orotic acid blocks VLDL secretion by preventing translocation of nascent particles from the endoplasmic reticulum to the cis Golgi compartment. The accumulation of normal amounts of discoidal HDL in liver perfusates despite virtual absence of triglyceride-rich lipoproteins in Golgi secretory compartments, the space of Disse, and the perfusate is inconsistent with the concept that nascent HDL are exclusively a product of surface remnants cast off during lipolysis of chylomicrons and VLDL.  相似文献   

6.
The hypertriglyceridemia associated with streptozotocin-induced diabetes in rats is largely reflected in the plasma lipoproteins of density less than 1.006 g/ml. Analysis of the plasma apolipoproteins of these rats indicated marked alterations in both the total levels and in the lipoprotein distribution of the major apolipoproteins. In whole plasma, diabetes was associated with significant increases in apolipoprotein (apo)-AIV, apo-AI, and apo-B (mainly in the intestinally derived apo-B240) and a marked decrease in apo-E. In the d less than 1.006 g/ml lipoprotein fraction (very-low-density lipoproteins (VLDL], there were significant increases in apo-B240, apo-AI, and apo-AIV and decreased levels of apo-E and the C apolipoproteins. The decrease in apo-C was primarily due to lower levels of apo-CII, and the ratio of the lipoprotein lipase inhibitor, apo-CIII, to the lipoprotein lipase activator, apo CII, was significantly increased over that in controls. The comparative clearance of triglycerides of VLDL particles from control and diabetic rat plasma was tested in recirculating heart perfusion in vitro. During 45-min perfusions of hearts from control donor rats, lipolysis of triglycerides of VLDL from diabetic rats was only 63-64% of that using plasma VLDL from control rats. Perfusion of hearts from diabetic rats with VLDL from control rats gave lipolysis values of only 53% of that obtained with normal hearts. Where both the VLDL and hearts were obtained from diabetic rats, lipolysis was 23% of that observed when both the lipoprotein and the organ were from control rats. The data suggest that in addition to depressed lipoprotein lipase activity in the tissue from diabetic rats, there are also major compositional changes in circulating lipoproteins which may contribute to defective triglyceride clearance from the circulation.  相似文献   

7.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

8.
The effect of endotoxin on myocardial utilization of very low density lipoprotein (VLDL) triacylglycerol (TAG) was studied. VLDL was prepared by rat liver perfusion and tested as substrate in the isolated working rat heart. Both liver and heart donor rats were pretreated in vivo with endotoxin or vehicle (control). VLDL-TAG synthesized by endotoxin-pretreated livers was assimilated and oxidized at an increased rate by hearts compared with control VLDL-TAG, regardless of the cardiac endotoxic status, with increased cardiac mechanical performance (cardiac output, hydraulic work). There was no change in incorporation of labeled VLDL lipids into myocardial tissue lipids. Lipoprotein lipase (LPL) activity was increased in endotoxin-pretreated hearts, and after perfusion with "endotoxic" VLDL, there was a tendency for translocation of LPL from tissue-residual to heparin-releasable compartments, but these changes were modest. Analysis of the VLDL composition showed that endotoxin-pretreated livers produced apolipoprotein (apo)-B48 VLDL with decreased particle size (and hence TAG content), but apo-B100 VLDL was unchanged. Oleate content of VLDL was increased, but there was no difference in apo-C or apo-E content. These results suggest that VLDL-TAG produced during sepsis/endotoxinemia may be destined for utilization by the heart as energy substrate. However, the mechanism for its increased efficacy is uncertain.  相似文献   

9.
Very low density lipoprotein (VLDL) is the major vehicle in the plasma which carries triacylglycerol synthesized in the liver to peripheral tissues for utilization. Estrogen-induced chick parenchymal liver cells (hepatocytes) synthesize and secrete large amounts of VLDL. These cells, in a primary monolayer culture system developed in this laboratory, have been employed to study the operative and regulatory aspects of VLDL synthesis, assembly, and secretion. Some 10 min are required for the translation of the principle VLDL protein constituent, apolipoprotein B, and 30–35 min are required for the two newly translated chick VLDL apolipoproteins, apolipoprotein B and apolipoprotein II, to be secreted. Apolipoprotein B is synthesized on membrane-bound polysomes as a contiguous polypeptide chain of 350K molecular weight (MW) and is not assembled posttranslationally from smaller-peptide precursors. Translocation of puromycin-discharged apolipoprotein B nascent chains into the endoplasmic reticulum lumen and their subsequent secretion are independent of both ongoing protein synthesis and the attachment of the nascent peptides to ribosomes. Apolipoprotein B nascent chains discharged by puromycin assemble with glycerolipid (mainly triacylglycerol) and are secreted as immunoprecipitable VLDL. Core oligosaccharides are added to the apolipoprotein B nascent chain co-translationally in at least two stages, at molecular weights of ~ 120K and ~ 280K. Inhibition of N-linked glycosylation of apolipoprotein B with tunicamycin affects neither the assembly of glycerolipids into VLDL nor the secretion of the VLDL particle, indicating that aglyco-apolipoprotein B can serve as a functional component for VLDL assembly and secretion. Active synthesis of the VLDL apolipoproteins is required, however, for glycerolipid assembly into VLDL and secretion from the hepatocyte. The differential kinetics with which newly synthesized apolipoproteins and glycerolipids are secreted as VLDL and the timing of the effects of protein-synthesis inhibitors on their secretion indicate that VLDL constituents are assembled sequentially in the intact liver cell. The bulk of the VLDL triacylglycerol and some VLDL phosphoglyceride is introduced early in the secretory pathway proximal, yet subsequent to apopeptide synthesis, while a significant fraction of VLDL phosphoglyceride associates with the resulting triacylglycerol-rich lipid-protein complexes just prior to their secretion as mature VLDL. Within the context of current models for VLDL structure, the late assembly of phosphoglyceride into VLDL is taken to represent a surface maturation of the nascent VLDL particle.  相似文献   

10.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

11.
A model is proposed for the metabolism of plasma lipoprotein apoproteins based on studies of a hyperlipoproteinemic subject who received 2.5 mCi[3H]leucine intravenously. Measurements included apoprotein specific activities (apo-B and apo-C) of very low density lipoprotein (VLDL) and of three low density lipoprotein (LDL) subspecies, Sf 17 LDL, Sf 10 LDL, and Sf 4 LDL. Activities of plasma albumin were also determined. The data were analyzed using a compartmental model and the SAAM computer program. A chain-like series of compartments were necessary to simulate plasma VLDL kinetics, suggesting a multistep delipidation process. The data are consistent with the notion that VLDL is the dominant LDL precursor. Two modes of conversion from VLDL to LDL are required. After partial delipidation some VLDL is converted to the Sf 17 LDL, while the remainder undergoes further delipidation before being converted to Sf 4 LDL, the major plasma LDL component. Some direct release of LDL into plasma had to be introduced to fit the data, about 24% of total LDL production. The three LDL subspecies follow a precursor-product relationship (Sf 17 leads to Sf 10 leads to Sf 4). The analysis also indicates that in using labeled leucine as a tracer, the slow exchange of leucine with the total body protein pool must be considered in trying to resolve the LDL subsystem and in the estimation of steady-state apoprotein levels. In view of the fact that the proposed model is based predominantly on the data from a single patient, no generalizations can be made about parameter values. The study is most valuable, however, in pointing out metabolic pathways not considered before and in calling attention to variables that must be considered in the design of experiments to study lipoprotein kinetics.  相似文献   

12.
Very low-density lipoprotein (VLDL) particles are formed in the endoplasmic reticulum (ER) through the association of lipids with apolipoprotein B (apoB). Microsomal triglyceride transfer protein (MTP), which transfers lipid molecules to nascent apoB, is essential for VLDL formation in ER. However, little is known of the distribution and interaction of MTP with apoB within ER. In this study, distribution patterns of apoB and MTP large subunit (lMTP) within ER were examined. Microsomes prepared from HuH-7 cells, a human hepatoma cell line, were further fractionated into rough ER (RER)-enriched subfractions (ER-I fraction) and smooth ER (SER)-enriched subfractions (ER-II fraction) by iodixanol density-gradient ultracentrifugation. ApoB was evenly distributed in the ER-I and the ER-II fractions, while 1.5 times more lMTP molecules were present in the ER-I fraction than in the ER-II fraction. lMTP and apoB were coprecipitated both in the ER-I and in the ER-II fractions by immunoprecipitation whenever anti-apoB or an anti-lMTP antibodies were used. ApoB-containing lipoprotein particles showed a lower density in the ER-II fraction than those in the ER-I fraction. From these results, it is suggested that MTP can function in both rough and smooth regions of ER in human hepatoma cells.  相似文献   

13.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

14.
We have used a competitive enzyme-linked immunoassay with a panel of monoclonal antibodies to probe the topography of the membrane-bound form of apolipoprotein B (apo B) in rabbit microsomes. All epitopes investigated were found to be expressed at the cytosolic side of the microsomal membrane under conditions in which the vesicles remained sealed. These results indicate that the membrane-associated form of apolipoprotein B is either at the cytosolic side of the endoplasmic reticulum membrane or integrated into the membrane. From this site apo B may be translocated to the lumen for assembly into VLDL or may be degraded.  相似文献   

15.
Apolipoprotein (apo-) E2 and beta-migrating very low density lipoproteins (beta-VLDL) (which were isolated from type III hyperlipoproteinemic subjects) both demonstrated defective binding to apo-E and apo-B,E receptors on dog liver membranes and to apo-B,E low density lipoproteins (LDL) receptors on fibroblasts. The defective binding activity of the apo-E2 and beta-VLDL varied from very poor to nearly normal. The ability of the beta-VLDL to interact with hepatic apo-E receptors was enhanced by the addition of normal apo-E3 to the beta-VLDL. Furthermore, cysteamine treatment of the apo-E2 in beta-VLDL enhanced binding of the beta-VLDL to both apo-E and apo-B,E receptors. The importance of apo-E in mediating the receptor binding of beta-VLDL to these receptors was confirmed by using monoclonal antibodies. The residual binding activity of beta-VLDL to apo-E and apo-B,E receptors was inhibited by greater than 90% with anti-apo-E, while the addition of anti-apo-B had little effect. The apo-B in the beta-VLDL was capable of binding to apo-B,E receptors after the hydrolysis of the beta-VLDL triglycerides with milk lipoprotein lipase. Lipase treatment yielded, two subfractions of beta-VLDL. One fraction (d = 1.02 to 1.03 g/ml) was enriched with apo-B100; the other fraction (d less than 1.006 g/ml) was enriched with apo-B48 and apo-E2. Significantly increased amounts of the apo-B100-enriched fraction bound to apo-B,E receptors. Inhibition of this binding caused by the addition of anti-apo-B indicated that the binding activity of this subfraction was mediated by apo-B100. The apo-B48-enriched fraction did not show a significant increase in receptor binding, suggesting that apo-B48 does not bind to these receptors. In a control experiment, it was shown that triglyceride-rich VLDL, which contain normal apo-E3 and apo-B100, bind significantly to both liver apo-E receptors and fibroblast apo-B,E receptors. This binding activity was inhibited by greater than 90% with anti-apo-E. Lipase hydrolysis of the VLDL did not further enhance their receptor-binding activity. These results demonstrate that apo-E, and not apo-B, is the major determinant mediating the receptor-binding activity of cholesterol-rich beta-VLDL and triglyceride-rich VLDL.  相似文献   

16.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

17.
The microsomal triglyceride transfer protein (MTP) is necessary for the proper assembly of the apolipoprotein B containing lipoproteins, very low density lipoprotein and chylomicrons. Recent research has significantly advanced our understanding of the role of MTP in these pathways at the molecular and cellular level. Biochemical studies suggest that initiation of lipidation of the nascent apolipoprotein B polypeptide may occur through a direct association with MTP. This early lipidation may be required to allow the nascent polypeptide to fold properly and therefore avoid ubiquitination and degradation. Concerning the addition of core neutral lipids in the later stages of lipoprotein assembly, cell culture studies show that MTP lipid transfer activity is not required for this to occur for apolipoprotein B-100 containing lipoproteins. Likewise, MTP does not appear to directly mediate addition of core neutral lipid to nascent apoB-48 particles. However, new data indicate that MTP is required to produce triglyceride rich droplets in the smooth endoplasmic reticulum which may supply the core lipids for conversion of nascent, dense apoB-48 particles to mature VLDL. In addition, assembly of dense apolipoprotein B-48 containing lipoproteins has been observed in mouse liver in the absence of MTP. As a result of these new data, an updated model for the role of MTP in lipoprotein assembly is proposed.  相似文献   

18.
The ability of apolipoprotein (apo-) B48 to interact with lipoprotein receptors was investigated using three different types of lipoproteins. First, canine chylomicron remnants, which contained apo-B48 as their primary apoprotein constituent, were generated by the hydrolysis of chylomicrons with milk lipoprotein lipase. These apo-B48-containing chylomicron remnants are deficient in apo-E and reacted very poorly with apo-E receptors on adult dog liver membranes and the low density lipoprotein (apo-B,E) receptors on human fibroblasts. Addition of normal human apo-E3 restored the receptor binding activity of these lipoproteins. Second, beta-very low density lipoproteins (beta-VLDL) from cholesterol-fed dogs were subfractionated into distinct classes containing apo-E along with either apo-B48 or apo-B100. Both classes bound to the apo-B,E and apo-E receptors. Their binding was almost completely mediated by apo-E, as evidenced by the ability of the anti-apo-E to inhibit the receptor interaction. Third, beta-VLDL from type III hyperlipoproteinemic patients were subfractionated by immunoaffinity chromatography into lipoproteins containing apo-E plus either apo-B48 or apo-B100. Both subfractions bound poorly to apo-B,E and apo-E receptors due to the presence of defective apo-E2. However, the residual binding of the apo-B48-containing and apo-B100-containing human beta-VLDL was inhibited by the anti-apo-E. After lipase hydrolysis, apo-B100 became a more prominant determinant responsible for mediating receptor binding to the apo-B,E receptor. By contrast, lipase hydrolysis did not increase the binding activity of the apo-B48-containing beta-VLDL. These results indicate that apo-B48 does not play a direct role in mediating the interaction of lipoproteins with receptors on fibroblasts or liver membranes.  相似文献   

19.
The vectorial translocation of nascent proteins through the membrane of the rough endoplasmic reticulum has been shown to require a specific membrane-bound protein whose cytoplasmic domain can be proteolytically cleaved and isolated as an active peptide of mol wt 60,000 (Meyer and Dobberstein, 1980, J. Cell Biol. 87:503-508). Rabbit antibodies raised against this peptide were used to further characterize the membrane- bound molecule. Immunoprecipitation of solubilized, radiolabeled rough microsomal proteins yielded a single polypeptide of mol wt 72,000, representing the membrane-bound protein from which the 60,000-mol wt peptide was proteolytically derived. The antibody could also be used to remove exclusively the 60,000-mol wt peptide, and thus the translocation activity, from elastase digests tested in a reconstituted system. Moreover, immunoprecipitation of elastase extracts alkylated with [14C] N-ethylmaleimide selected a single species of mol wt 60,000. Immunoprecipitation of in vivo radiolabeled proteins from the appropriate cell type yielded the 72,000-mol wt membrane protein irrespective of the duration of labeling, or if followed by a chase. Subsequent treatment with protease generated the 60,000-mol wt fragment. In addition, the antibody could be used to visualize reticular structures in intact cells which correspond to endoplasmic reticulum at the ultrastructural level. It is thus clear that one membrane component required in the vectorial translocation of nascent secretory (and membrane) proteins is a peptide of mol wt 72,000.  相似文献   

20.
The possibility that apoB 100 is cotranslationally translocated to the endoplasmic reticulum lumen and integrated into lipoproteins has been investigated. ApoB 100 nascent polypeptides were shown to be secreted from pulse-labeled Hep G2 cells after treatment with puromycin and chase for 1 or 2 h in the presence of puromycin and cycloheximide. These nascent polypeptides banded during sucrose gradient ultracentrifugation between the position of the high (HDL) and the low (LDL) density lipoproteins, revealing an inverse relationship between the length of the polypeptide and the density of the fraction. ApoB 100 occurred in the position of LDL and very low density lipoproteins (VLDL). Electronmicroscopy studies of the apoB-containing particles from the gradient indicated an increase in size with increasing length of the polypeptide. Furthermore, labeling studies indicated that the triglyceride load increased with the length of the polypeptide. An inverse relationship between the size of C-terminally truncated apoB polypeptides and the density of the assembled lipoproteins was also observed in experiments with transfected minigenes coding for apoB 41, apoB 29, and apoB 23. These proteins appeared on HDL particles. Pulse-chase experiments indicated that 80-200-kDa apoB nascent polypeptides on particles with HDL density, with time, were converted into larger polypeptides on lighter particles, to be fully replaced by apoB 100 on LDL-VLDL particles. The formation of these LDL-VLDL particles could be blocked by cycloheximide. Sixty-five percent of pulse-labeled apoB nascent polypeptides present in the microsomal fraction was released by sodium carbonate treatment, and 77% of these polypeptides could be recovered on the immature particles (banding between HDL and LDL) after sucrose gradient ultracentrifugation. Pulse-chase experiments indicated that these nascent polypeptides, on the immature lipoproteins, had the capacity to be precursors for all the apoB 100-containing LDL and VLDL particles formed in the cell. The obtained results indicate that a major portion of the apoB nascent polypeptides in the cell form lipoproteins cotranslationally during the translocation to the lumen of the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号