首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.  相似文献   

3.
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive paralytic disease associated with spongiform neurodegeneration throughout the neuroaxis. Neurovirulence is determined by the sequence of the viral envelope gene and by the capacity of the virus to infect microglia. The neurocytopathic effect of this virus appears to be indirect, since the cells which degenerate are not infected. In the present study we have examined the possible role of inflammatory responses in this disease and have used as a control the virus F43. F43 is an highly neuroinvasive but avirulent virus which differs from FrCas(E) only in 3' pol and env sequences. Like FrCas(E), F43 infects large numbers of microglial cells, but it does not induce spongiform neurodegeneration. RNAase protection assays were used to detect differential expression of genes encoding a variety of cytokines, chemokines, and inflammatory cell-specific markers. Tumor necrosis factor alpha (TNF-alpha) and TNF-beta mRNAs were upregulated in advanced stages of disease but not early, even in regions with prominent spongiosis. Surprisingly there was no evidence for upregulation of the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and IL-6 or of the microglial marker F4/80 at any stage of this disease. In contrast, increased levels of the beta-chemokines MIP-1 alpha and -beta were seen early in the disease and were concentrated in regions of the brain rich in spongiosis, and the magnitude of responses was similar to that observed in the brains of mice injected with the glutamatergic neurotoxin ibotenic acid. MIP-1alpha and MIP-1beta mRNAs were also upregulated in F43-inoculated mice, but the responses were three- to fivefold lower and occurred later in the course of infection than was observed in FrCas(E)-inoculated mice. These results suggest that the robust increase in expression of MIP-1 alpha and MIP-1 beta in the brain represents a correlate of neurovirulence in this disease, whereas the TNF responses are likely secondary events.  相似文献   

4.
Yamane M  Miyazawa K  Moriya S  Abe A  Yamane S 《Biochimie》2011,93(9):1446-1459
In A549 cells, the addition of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) led to marked autophagy with massive microtubule-associated protein 1 light chain 3B (LC3B)-II protein expression as an indication of autophagy and a steep decrease of p62 protein as a co-indication of autophagy. The addition of DL-PDMP caused massive autophagy with an increase of CAAT/enhancer binding protein homologous protein (CHOP) expression as the marker of endoplasmic reticulum (ER) stress, lactate dehydrogenase (LDH) release without caspase 3 activation and many autophagic vacuoles/devoid of a cell membrane on morphology. On the other hand, the addition of DL-PDMP caused an increase in cellular or subcellular ceramides (Cers), especially palmitoyl-Cer, based on de novo synthesis of Cer, and led to caspase-independent apoptosis. Marked increases of Cer levels in the nuclear envelope were observed 17 h after the addition. The elevations of Cer synthase activity and longevity-assurance homologue (LASS)5 protein expression were observed in subcellular fractions from 30 min until 2 h after the addition. However, the elevations of Cer synthase activity were independent of reactive oxygen species generation or cytochrome P450 4F2 activity. Since an increase in LASS5 protein expression in subcellular fraction occur in preference to the variation of LC3B-II protein expression via CHOP expression after the addition and Cer accumulation induced by the addition contributes to ER stress, it is thought that an elevation of Cer synthase activity via LASS5 protein expression associate to autophagy via CHOP expression (ER stress) with the addition.  相似文献   

5.
6.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. To restore ER homeostasis, cells possess a highly specific ER quality-control system called the unfold protein response (UPR). In the case of prolonged ER stress or UPR malfunction, apoptosis signalling is activated. This ER stress-induced apoptosis has been implicated in the pathogenesis of several conformational diseases. CCAAT-enhancer-binding protein homologous protein (CHOP) is induced by ER stress and mediates apoptosis. Recent studies by the Gotoh group have shown that the CHOP pathway is also involved in ER stress-induced cytokine production in macrophages. The multifunctional roles of CHOP in the ER stress response are discussed below.  相似文献   

7.
A dominant negative mutant Friend murine leukemia virus (FMLV) env gene was cloned from an immunoselected Friend erythroleukemia cell. The mutant env had a point mutation which resulted in a Cys-to-Arg substitution at the 361st amino acid in the FMLV envelope protein (Env). The mutant Env was retained in the endoplasmic reticulum (ER) and accumulated because of its slow degradation. The NIH 3T3 cells expressing the mutant env were resistant to ecotropic Moloney MLV (MoMLV) penetration, suggesting that the mutant Env traps the ecotropic MLV receptors in the ER. When the mutant env gene was transfected into and expressed in the cells persistently infected with MoMLV, the wild-type Env was trapped in the ER, and the MoMLV production was suppressed. Thus, the mutant Env accumulating in the ER trans-dominantly and efficiently interfered with the ecotropic MLV infection at both the early and the late stages.  相似文献   

8.
9.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

10.
Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.  相似文献   

11.
12.
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) is known to activate the ER, which is termed ER stress. Here, we demonstrated that amyloid precursor protein (APP) is a novel mediator of ER stress-induced apoptosis through the C/EBP homologous protein (CHOP) pathway. Expression of APP mRNA was elevated by tunicamycin- or dithiothreitol-induced ER stress. The levels of C83 and APP intracellular domain (AICD) fragments, which are cleaved from APP, were significantly increased under ER stress, although the protein level of full-length APP was decreased. Cellular viability was reduced in APP-over-expressing cells, which was attenuated by treatment with a γ-secretase inhibitor, N -[ N -(3,5-difluorophenacetyl)-L-alanyl]- S -phenylglycine t -butyl ester (DAPT). Cellular viability was also reduced in AICD-FLAG-over-expressing cells. The mRNA and protein levels of CHOP, an ER stress-responsive gene, were remarkably increased by APP over-expression, which was attenuated by treatment with DAPT. CHOP mRNA induction was also found in AICD-FLAG-over-expressing cells. Cell death and CHOP up-regulation by ER stress were attenuated by APP knockdown. Data obtained with a luciferase assay and chromatin immunoprecipitation assay indicated that AICD associates with the promoter region of the CHOP gene. In conclusion, ER stress-induced APP undergoes α- and γ-secretase cleavage and subsequently induces CHOP-mediated cell death.  相似文献   

13.
The wild mouse ecotropic retrovirus, Cas-Br-E, induces progressive, noninflammatory spongiform neurodegenerative disease in susceptible mice. Functional genetic analysis of the Cas-Br-E genome indicates that neurovirulence maps to the env gene, which encodes the surface glycoprotein responsible for binding and fusion of virus to host cells. To understand how the envelope protein might be involved in the induction of disease, we examined the regional and temporal expression of Cas-Br-E Env protein in the central nervous systems (CNS) of mice infected with the highly neurovirulent chimeric virus FrCas(E). We observed that multiple isoforms of Cas-Br-E Env were expressed in the CNS, with different brain regions exhibiting unique patterns of processed Env glycoprotein. Specifically, the expression of gp70 correlated with regions showing microglial infection and spongiform neurodegeneration. In contrast, regions high in neuronal infection and without neurodegenerative changes (the cerebellum and olfactory bulb) were characterized by a gp65 Env protein isoform. Sedimentation analysis of brain region extracts indicated that gp65 rather than gp70 was incorporated into virions. Biochemical analysis of the Cas-Br-E Env isoforms indicated that they result from differential processing of N-linked sugars. Taken together, these results indicate that differential posttranslational modification of the Cas-Br-E Env is associated with a failure to incorporate certain Env isoforms into virions in vivo, suggesting that defective viral assembly may be associated with the induction of spongiform neurodegeneration.  相似文献   

14.
15.
16.
17.
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.  相似文献   

18.
To explore the relationship between UPR and autophagy in intestinal epithelial cells, we investigated whether autophagy was induced by endoplasmic reticulum (ER) stress in colon cancer cell lines. We demonstrated that autophagy was induced by ER stress in HT29, SW480, and Caco-2 cells. In these cells, inositol-requiring enzyme1α (IRE1α) and C/EBP homologous protein (CHOP) were involved in the ER stress–autophagy pathway, and CHOP was a regulator of IRE1α protein expression. Our findings suggest that CHOP promotes IRE1α and autophagy especially in ER stress conditions. This study will provide important insights into the disclosure of the ER stress–autophagy pathway.  相似文献   

19.
20.
The immature flavivirus particle contains two envelope proteins, prM and E, that are associated as a heterodimer. Virion morphogenesis of the flaviviruses occurs in association with endoplasmic reticulum (ER) membranes, suggesting that there should be accumulation of the virion components in this compartment. This also implies that ER localization signals must be present in the flavivirus envelope proteins. In this work, we looked for potential subcellular localization signals in the yellow fever virus envelope proteins. Confocal immunofluorescence analysis of the subcellular localization of the E protein in yellow fever virus-infected cells indicated that this protein accumulates in the ER. Similar results were obtained with cells expressing only prM and E. Chimeric proteins containing the ectodomain of CD4 or CD8 fused to the transmembrane domains of prM or E were constructed, and their subcellular localization was studied by confocal immunofluorescence and by analyzing the maturation of their associated glycans. Although a small fraction was detected in the ER-to-Golgi intermediate and Golgi compartments, these chimeric proteins were located mainly in the ER. The C termini of prM and E form two antiparallel transmembrane alpha-helices. Interestingly, the first transmembrane passage contains enough information for ER localization. Taken altogether, these data indicate that, besides their role as membrane anchors, the transmembrane domains of yellow fever virus envelope proteins are ER retention signals. In addition, our data show that the mechanisms of ER retention of the flavivirus and hepacivirus envelope proteins are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号